A series of europium-based metal organic frameworks with tuned intrinsic luminescence properties and detection capacities

Pengda Yi, Hongliang Huang*, Yaguang Peng, Dahuan Liu* and Chongli Zhong State Key Laboratory of Organic-Inorganic Composites, Beijing University of

Chemical Technology, Beijing 100029, China

Corresponding Author: Hongliang Huang, E-mail: huanghl@mail.buct.edu.cn;

Dahuan Liu, E-mail: liudh@mail.buct.edu.cn

TABLE OF CONTENTS

1. Crystal data and structure refinement	3
2. SEM images FT-IR spectra and TGA curves	4
3. Luminescence lifetime and fluorescence quantum yield	6
4. Sensing of anions	7
5. Sensing of organic solvent molecules	9
6. Sensing of metal ions	11
7. Photographs in various analytes under UV-light irradiation	13

1. Crystal data and structure refinement

Eu-BDC-NH ₂ (<i>CCDC: 1494828</i>)		
Empirical formula	$C_{104}H_{132}Eu_{12}N_{16}O_{76}$	
Formula weight	4644.703	
Measurement temperature	282(1) K	
Crystal system	Cubic	
Space group	Fm-3m	
<i>a</i> (Å)	21.713(3)	
<i>b</i> (Å)	21.713(3)	
c (Å)	21.713(3)	
α (°)	90	
β (°)	90	
γ (°)	90	
Volume(Å ³)	10237(2)	
Ζ	2	
Calculated density(g/cm ³)	1.610	
Absorption coefficient (mm ⁻¹)	26.572	
Independent reflections $(I > 2\sigma(I))$	515 [R(int) = 0.0345]	
F(000)	4744	
Reflections collected	3527	
Completeness to theta = $66.98 \circ$	100.0 %	
θ range for data collection	3.53-66.98	
Data/restraints/parameters	515/14/32	
Limiting indices	$-25 \le h \le 12$	
	$-21 \le k \le 25$	
	$-18 \le l \le 17$	
Goodness-of-fit on F^2	1.147	
R_I^a , wR2b $[I > 2\sigma(I)]$	$R_1 = 0.0900, wR_2 = 0.2544$	
R_1^a , wR_2^b (all data)	$R_1 = 0.0930, wR_2 = 0.2600$	
Largest diff. peak and hole (e/Å3)	1.697 and -3.912	

Table S1 Crystal data and structure refinement for $Eu-BDC-NH_2$

 ${}^{a}R_{I} = \Sigma(||F_{0}| - |F_{C}||) / \Sigma |F_{0}|.$

^b $wR_2 = [\Sigma w(|F_0|^2 - |F_C|^2)^2 / \Sigma w(F_0^2)]^{1/2}.$

2. SEM images FT-IR spectra and TGA curves

Fig. S1 SEM images for Eu-MOFs

Fig. S2 FT-IR spectra for Eu-MOFs

3. Luminescence lifetime and fluorescence quantum yield

Fig. S4 Luminescence lifetime for Eu-MOFs

Ligands	BDC-NH ₂	BDC-F	1,4-NDC
Fluorescence quantum yield	1.24%	3.40%	35.77%
Lifetime (ns)	4.88	2.17	21.1
MOFs	Eu-BDC-NH ₂	Eu-BDC-F	Eu-1,4-NDC
Fluorescence quantum yield	3.21%	30.83%	57.01%
Lifetime (ms)	0.54	0.72	1.06

Table S2 The quenching efficiencies of the Eu-MOFs in various analytes

4. Sensing of anions

Fig. S5 The PL intensities of Eu-MOFs toward with various anions and in various concentrations of $Cr_2O_7^{2-}$ solution.

Fig. S6 Liqiud UV-vis absorption spectra of different anions.

5. Sensing of organic solvent molecules

Fig. S7 The PL intensities of Eu-MOFs with various pure organic solvents and in various concentrations of acetone solution.

Fig. S8 Liqiud UV-vis absorption spectra of different solvents.

6. Sensing of metal ions

Fig. S9 The PL intensities of Eu-MOFs toward various ions and in various concentrations of Fe³⁺ solution.

Fig. S10 PXRD patterns of the original and ions exchanged compounds.

Sample	Eu ³⁺ (ppm)	Fe ³⁺ (ppm)
Eu-BDC-NH ₂	19.10	1.496
Eu-BDC-F	12.44	2.478
Eu-1,4-NDC	20.04	2.083

Table S3 The detailed ICP studies of Eu-MOFs and target metal ions

7. Photographs in various analytes under UV-light irradiation

Fig. S11 The photographs of Eu-MOFs in the analytes solutions (10⁻²M) under UV-light