ELECTRONIC SUPPLEMENTARY INFORMATION

Sn-P-F Containing Glass Matrix for the Fabrication of Phosphor-in-Glass for Use in high power LEDs

Heeyeon Yoo,^{*a*, \perp} Yoshihiro Kouhara,^{*b*, \perp} Hee Chang Yoon,^{*a*} Sang Jun Park,^{*c*} Ji Hye Oh,^{*a*} and Young Rag Do^{*a**}

^a Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
^b YEJ GLASS Co., Ltd., Kagoshima-Ken, 899-0401, Japan.
^c YEK GLASS Co., Ltd., Seoul, 06093, Korea.

E-mail: yrdo@kookmin.ac.kr

FigureS1. PL intensity of the YAG phosphor after a heat treatment at 25 to 600 °C for 1 hour at each indicated temperature

FigureS2. EL intensity of (a) bare glass plate at 454nm (b) PiG and additional EL data of (c) PiG with different sintering temperature

	Temperature(°C)	ССТ	CIE x	CIE y	LE (lm/W)	LER (Im/W _{opt})	EQE	CRI
	210	-	0.149	0.040	16.8	50.3	0.33	-
Bare glass plate	230	-	0.148	0.040	18.1	50.1	0.36	-
	250	-	0.148	0.040	17.3	50.1	0.34	-
	210	3920	0.401	0.441	114	383	0.296	65
PiG plate	230	4385	0.370	0.393	108	354	0.306	69
	250	3845	0.408	0.449	112	387	0.288	64

TableS1. EL data of bare glass plate and PiG with different sintering temperature.

(a), (b) EL spectra and color coordinates of PIG after post-annealing and PiSB on COB at 36V.
(c), (d) EL spectra and color coordinates of PIG after post-annealing and PiSB on a high-power LED at 350mA. The PiGs were sintered at 230 °C for 45sec.

-									
		сст	CIE x	CIE y	LE (lm/W)	LER (Im/W _{opt})	EQE	CRI	
	PiG on COB	4370	0.369	0.394	110	363	0.303	64	
	PiSB on COB	4900	0.348	0.362	114	342	0.333	67	
	PiG on LED	4275	0.374	0.399	118	358	0.330	68	
	PiSB on LED	4670	0.357	0.379	124	346	0.358	70	

TableS2. EL data of (a) PiG on COB, (b) PiSB on COB, (c) PiG on high-power LED, and (d) PiSB on high-power LED after post-annealing

FigureS4. Optical properties before and after post-annealing on COB and LED samples with the weight percentages.

FigureS5. Optical properties before and after post-annealing on COB and LED samples with the PiG weights.

FigureS6. Long-term stability of the PiG based DC-WLED on a high power LED at 350mA up to 100 hours (a) Relative luminous efficacy of PiG based DC-WLED, (b) Transmittance of the PiG, and (c) XRD patterns of the PiG before –and -after the long-term stability test.