Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary data

Fig. S1 Experimental FT-IR spectrum of the dye \mathbf{M}

Table S2 Electronic absorption spectrum of the compound \mathbf{M} calculated by TDB3LYP/6$311^{++} G^{*}$ method

Excited state	Wavelength (nm)	Excitation energy (eV)	Configurations composition (corresponding transition orbitals)	Oscillator strength (f)
S_{1}	2869	0.43	$1.02(198 \rightarrow 199)-0.22(199 \rightarrow 198)$	0.14
S_{2}	1223	1.01	$-0.10(198 \rightarrow 200)+0.98060(197 \rightarrow 199)$	0.02
S_{3}	764	1.63	$\begin{aligned} & 0.38(198\rightarrow 200)+0.23(199 \rightarrow 200)+0.78(195 \rightarrow 199) \\ &+0.26(196 \rightarrow 199)+0.26(198 \rightarrow 200) \\ & \hline \end{aligned}$	2.04
S_{4}	690	1.80	-0.11(198 $\rightarrow 200$) - 0.21(195 \rightarrow 199) $+0.96(196 \rightarrow 199)$	0.00
S_{5}	601	2.07	$\begin{aligned} 0.33(198 \rightarrow 200) & +0.30(199 \rightarrow 200)-0.48(195 \rightarrow 199) \\ & +0.73(198 \rightarrow 200) \end{aligned}$	0.31
S_{6}	596	2.08	$-0.51(193 \rightarrow 199)+0.86(194 \rightarrow 199)$	0.00
S_{7}	567	2.19	$\begin{aligned} \hline-0.26(191 \rightarrow 199) & -0.12(192 \rightarrow 199)+0.81(193 \rightarrow 199) \\ & +0.49(194 \rightarrow 199) \end{aligned}$	0.00
S_{8}	563	2.20	$\begin{gathered} 0.28(199 \rightarrow 200)+0.78(191 \rightarrow 199)+0.37(192 \rightarrow 199) \\ +0.27(193 \rightarrow 199)+0.15(194 \rightarrow 199)-0.21(198 \rightarrow 200) \\ \hline \end{gathered}$	0.06
S9	549	2.26	$\begin{aligned} & -0.20(197 \rightarrow 200)+0.76(199 \rightarrow 200)-0.22(191 \rightarrow 199) \\ & -0.37(192 \rightarrow 199)+0.15(197 \rightarrow 200)-0.38(198 \rightarrow 200) \\ & \hline \end{aligned}$	0.15
S_{10}	536	2.32	$\begin{gathered} -0.14(197 \rightarrow 200)-0.17(198 \rightarrow 200)+0.24(199 \rightarrow 200) \\ -0.44(191 \rightarrow 199)+0.80(192 \rightarrow 199)+0.13(195 \rightarrow 199) \\ +0.11(197 \rightarrow 200) \\ \hline \end{gathered}$	0.00
S_{11}	498	2.49	$\begin{aligned} & \hline-0.34(197 \rightarrow 200)+0.72(198 \rightarrow 200)-0.31(199 \rightarrow 200) \\ & -0.11(188 \rightarrow 199)-0.13(191 \rightarrow 199)+0.12(192 \rightarrow 199) \\ & +0.10(197 \rightarrow 199)+0.25(197 \rightarrow 200)-0.33(198 \rightarrow 200) \\ & \hline \end{aligned}$	0.36
S_{12}	494	2.51	$\begin{aligned} & 0.59(197 \rightarrow 200)+0.29(198 \rightarrow 200)+0.15(199 \rightarrow 200) \\ & -0.20(188 \rightarrow 199)-0.17(191 \rightarrow 199)+0.18(192 \rightarrow 199) \\ & -0.20(195 \rightarrow 199)-0.51(197 \rightarrow 200)-0.26(198 \rightarrow 200) \\ & \hline \end{aligned}$	0.23
S_{13}	462	2.68	$\begin{aligned} & -0.16(193 \rightarrow 200)+0.10(197 \rightarrow 200)+0.23(198 \rightarrow 200) \\ & -0.11(183 \rightarrow 199)+0.12(185 \rightarrow 199)+0.25(187 \rightarrow 199) \\ & +0.78(188 \rightarrow 199)-0.34(189 \rightarrow 199)-0.14(198 \rightarrow 200) \\ & \hline \end{aligned}$	0.19
S_{14}	440	2.82	$\begin{aligned} \hline 0.13(183 \rightarrow 199)+ & 0.36(188 \rightarrow 199)+0.88(189 \rightarrow 199) \\ & -0.27(190 \rightarrow 199) \end{aligned}$	0.00
S_{15}	432	2.87	$\begin{gathered} 0.28(183 \rightarrow 199)-0.26(185 \rightarrow 199)-0.25(187 \rightarrow 199) \\ 0.26(188 \rightarrow 199)+0.83(190 \rightarrow 199) \\ \hline \end{gathered}$	0.00
S_{16}	426	2.91	$\begin{gathered} \hline-0.11(199 \rightarrow 206)+0.49(183 \rightarrow 199)+0.28(184 \rightarrow 199) \\ -0.39(185 \rightarrow 199)-0.37(187 \rightarrow 199)+0.15(188 \rightarrow 199) \\ -0.30(189 \rightarrow 199)-0.48(190 \rightarrow 199) \\ \hline \end{gathered}$	0.01
S_{17}	413	3.00	$\begin{gathered} \hline 0.22(193 \rightarrow 200)+0.62(197 \rightarrow 200)+0.11(182 \rightarrow 199) \\ -0.13(195 \rightarrow 200)+0.71(197 \rightarrow 200) \\ \hline \end{gathered}$	0.05
S_{18}	409	3.03	$\begin{aligned} & 0.45(183\rightarrow 199)-0.35(184 \rightarrow 199)+0.38(185 \rightarrow 199) \\ &+0.69(186 \rightarrow 199)-0.22(187 \rightarrow 199) \\ & \hline \end{aligned}$	0.00
S_{19}	406	3.05	$\begin{gathered} 0.15(183 \rightarrow 199)+0.20(184 \rightarrow 199)-0.50(185 \rightarrow 199) \\ +0.49(186 \rightarrow 199)+0.66(187 \rightarrow 199) \\ \hline \end{gathered}$	0.00
S_{20}	405	3.06	$\begin{gathered} 0.61(183 \rightarrow 199)+0.34(185 \rightarrow 199)-0.48(186 \rightarrow 199) \\ +0.48(187 \rightarrow 199)-0.14(188 \rightarrow 199) \\ \hline \end{gathered}$	0.00

Table S3 Occupancy of NBOs and hybrids of the dye \mathbf{M} calculated by B3LYP/6-311++ G^{*} method for $\mathrm{C}, \mathrm{N}, \mathrm{S}, \mathrm{Cl}$ atoms

Donor Lewis - type NBOs	Occupancy	Hybrid	AO (\%)
$\sigma(1) \mathrm{C}(13)-\mathrm{N}(14)$	0.99001	$\mathrm{sp}^{3.43}$	$\mathrm{s}(22.56 \%) \mathrm{p}(77.32 \%)$
$\sigma(1) \mathrm{C}(13)-\mathrm{N}(14)$	0.99001	$\mathrm{sp}^{2.12}$	$\mathrm{s}(32.04 \%) \mathrm{p}(67.94 \%)$
$\sigma(1) \mathrm{C}(15)-\mathrm{N}(14)$	0.99180	sp ${ }^{1.84}$	s(35.21\%) p (64.75%)
$\sigma(1) \mathrm{C}(15)-\mathrm{N}(14)$	0.99180	$\mathrm{sp}^{2.53}$	$\mathrm{s}(28.30 \%) \mathrm{p}(71.61 \%)$
$\sigma(1) \mathrm{C}(38)-\mathrm{N}(14)$	0.99186	$\mathrm{sp}^{2.14}$	$\mathrm{s}(31.85 \%) \mathrm{p}(68.13 \%)$
$\sigma(1) \mathrm{C}(38)-\mathrm{N}(14)$	0.99186	$\mathrm{sp}^{3.28}$	$\mathrm{s}(23.32 \%) \mathrm{p}(76.56 \%)$
$\sigma(1) \mathrm{N}(25)-\mathrm{C}(24)$	0.99201	$\mathrm{sp}^{2.42}$	$\mathrm{s}(29.20 \%) \mathrm{p}(70.70 \%)$
$\sigma(1) \mathrm{N}(25)-\mathrm{C}(24)$	0.99201	sp ${ }^{1.72}$	$\mathrm{s}(36.76 \%) \mathrm{p}(63.19 \%)$
$\sigma(1) \mathrm{N}(25)-\mathrm{C}(26)$	0.99058	$\mathrm{sp}^{2.05}$	$\mathrm{s}(32.75 \%) \mathrm{p}(67.22 \%)$
$\sigma(1) \mathrm{N}(25)-\mathrm{C}(26)$	0.99058	$\mathrm{sp}^{2.85}$	$\mathrm{s}(25.98 \%) \mathrm{p}(73.92 \%)$
$\sigma(1) \mathrm{N}(25)-\mathrm{C}(34)$	0.99073	$\mathrm{sp}^{2.28}$	$\mathrm{s}(30.45 \%) \mathrm{p}(69.53 \%)$
$\sigma(1) \mathrm{N}(25)-\mathrm{C}(34)$	0.99073	$\mathrm{sp}^{3.57}$	$\mathrm{s}(21.85 \%) \mathrm{p}(78.02 \%)$
$\sigma(1) \mathrm{C}(8)-\mathrm{Cl}(83)$	0.99410	$\mathrm{sp}^{3.22}$	$\mathrm{s}(23.68 \%) \mathrm{p}(76.15 \%)$
$\sigma(1) \mathrm{C}(8)-\mathrm{Cl}(83)$	0.99410	$\mathrm{sp}^{4.20}$	s(19.15\%) p (80.34%)
$\sigma(1) \mathrm{C}(41)-\mathrm{S}(88)$	0.98457	$\mathrm{sp}^{4.23}$	$\mathrm{s}(19.09 \%) \mathrm{p}(80.80 \%)$
$\sigma(1) \mathrm{C}(41)-\mathrm{S}(88)$	0.98457	$\mathrm{sp}^{3.05}$	$\mathrm{s}(24.32 \%) \mathrm{p}(74.18 \%)$
$\sigma(1) \mathrm{O}(85)-\mathrm{S}(84)$	0.99398	$\mathrm{sp}^{2.94}$	$\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%)$
$\sigma(1) \mathrm{O}(85)-\mathrm{S}(84)$	0.99398	$\mathrm{sp}^{3.41}$	$\mathrm{s}(22.66 \%) \mathrm{p}(77.22 \%)$
$\sigma(1) \mathrm{O}(86)-\mathrm{S}(84)$	0.99415	$\mathrm{sp}^{2.80}$	$\mathrm{s}(25.88 \%) \mathrm{p}(72.37 \%)$
$\sigma(1) \mathrm{O}(86)-\mathrm{S}(84)$	0.99415	$\mathrm{sp}^{3.19}$	$\mathrm{s}(23.84 \%) \mathrm{p}(76.03 \%)$
$\sigma(1) \mathrm{O}(87)-\mathrm{S}(84)$	0.99392	$\mathrm{sp}^{2.90}$	$\mathrm{s}(25.16 \%) \mathrm{p}(73.00 \%)$
$\sigma(1) \mathrm{O}(87)-\mathrm{S}(84)$	0.99392	$\mathrm{sp}^{3.39}$	$\mathrm{s}(22.74 \%) \mathrm{p}(77.14 \%)$
$\sigma(1) \mathrm{O}(89)-\mathrm{S}(88)$	0.99414	$\mathrm{sp}^{2.77}$	$\mathrm{s}(26.06 \%) \mathrm{p}(72.21 \%)$
$\sigma(1) \mathrm{O}(89)-\mathrm{S}(88)$	0.99414	$\mathrm{sp}^{3.17}$	$\mathrm{s}(23.95 \%) \mathrm{p}(75.92 \%)$
$\sigma(1) \mathrm{O}(90)-\mathrm{S}(88)$	0.99414	$\mathrm{sp}^{2.94}$	$\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%)$
$\sigma(1) \mathrm{O}(90)-\mathrm{S}(88)$	0.99414	$\mathrm{sp}^{3.41}$	$\mathrm{s}(22.67 \%) \mathrm{p}(77.20 \%)$
$\sigma(1) \mathrm{O}(91)-\mathrm{S}(88)$	0.99384	$\mathrm{sp}^{2.94}$	$\mathrm{s}(24.90 \%) \mathrm{p}(73.27 \%)$
$\sigma(1) \mathrm{O}(91)-\mathrm{S}(88)$	0.99384	$\mathrm{sp}^{3.42}$	$\mathrm{s}(22.60 \%) \mathrm{p}(77.27 \%)$
LP (1) N(14)	0.88297	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.88 \%) \mathrm{p}(99.12 \%)$
LP (1) N(25)	0.80234	$\mathrm{p}^{1.00}$	s(0.01\%) p(99.98\%)
LP (1) Cl(83)	0.99510	$\mathrm{sp}^{0.24}$	$\mathrm{s}(80.79 \%) \mathrm{p}(19.19 \%)$
LP (2) Cl(83)	0.97891	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.07 \%) \mathrm{p}(99.91 \%)$
LP (3) Cl(83)	0.95551	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.02 \%) \mathrm{p}(99.95 \%)$
LP (1) O(85)	0.98215	sp ${ }^{0.30}$	$\mathrm{s}(77.06 \%) \mathrm{p}(22.94 \%)$
LP (2) O(85)	0.92837	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.34 \%) \mathrm{p}(99.60 \%)$
LP (3) O(85)	0.92501	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.00 \%) \mathrm{p}(99.94 \%)$
LP (1) O(86)	0.99164	sp ${ }^{0.31}$	$\mathrm{s}(76.20 \%) \mathrm{p}(23.80 \%)$
LP (2) O(86)	0.91933	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.00 \%) \mathrm{p}(99.93 \%)$
LP (3) O(86)	0.91578	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.00 \%) \mathrm{p}(99.93 \%)$
LP (1) O(87)	0.98175	sp ${ }^{0.30}$	$\mathrm{s}(76.99 \%) \mathrm{p}(23.00 \%)$
LP (2) O(87)	0.92803	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.32 \%) \mathrm{p}(99.62 \%)$
LP (3) O(87)	0.92362	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.00 \%) \mathrm{p}(99.94 \%)$
LP (1) O(89)	0.99169	$\mathrm{sp}^{0.31}$	$\mathrm{s}(76.08 \%) \mathrm{p}(23.91 \%)$
LP (2) O(89)	0.91839	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.01 \%) \mathrm{p}(99.93 \%)$
LP (3) O(89)	0.91556	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.00 \%) \mathrm{p}(99.93 \%)$
LP (1) O(90)	0.98190	sp ${ }^{0.30}$	$\mathrm{s}(77.12 \%) \mathrm{p}(22.88 \%)$
LP (2) O(90)	$0.93023)$	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.26 \%) \mathrm{p}(99.68 \%)$
LP (3) O(90)	0.92324	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.01 \%) \mathrm{p}(99.93 \%)$
LP (1) O(91)	0.98175	sp ${ }^{0.30}$	$\mathrm{s}(77.09 \%) \mathrm{p}(22.91 \%)$

LP (2) O(91)	0.92997	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.35 \%) \mathrm{p}(99.59 \%)$
LP (3) O(91)	0.92455	$\mathrm{p}^{1.00}$	$\mathrm{s}(0.01 \%) \mathrm{p}(99.93 \%)$
$\pi(2) \mathrm{C}(13)-\mathrm{N}(14)$	0.02063	$\mathrm{sp}^{3.43}$	$\mathrm{s}(22.56 \%) \mathrm{p}(77.32 \%)$
$\pi(2) \mathrm{C}(13)-\mathrm{N}(14)$	0.02063	$\mathrm{sp}^{2.12}$	$\mathrm{s}(32.04 \%) \mathrm{p}(67.94 \%)$
$\pi(2) \mathrm{C}(15)-\mathrm{N}(14)$	0.01709	$\mathrm{sp}^{1.84}$	$\mathrm{s}(35.21 \%) \mathrm{p}(64.75 \%)$
$\pi(2) \mathrm{C}(15)-\mathrm{N}(14)$	0.01709	$\mathrm{sp}^{2.53}$	$\mathrm{s}(28.30 \%) \mathrm{p}(71.61 \%)$
$\pi(2) \mathrm{C}(38)-\mathrm{N}(14)$	0.01325	$\mathrm{sp}^{2.14}$	$\mathrm{s}(31.85 \%) \mathrm{p}(68.13 \%)$
$\pi(2) \mathrm{C}(38)-\mathrm{N}(14)$	0.01325	$\mathrm{sp}^{3.28}$	$\mathrm{s}(23.32 \%) \mathrm{p}(76.56 \%)$
$\pi(2) \mathrm{N}(25)-\mathrm{C}(24)$	0.01595	$\mathrm{sp}^{2.42}$	$\mathrm{s}(29.20 \%) \mathrm{p}(70.70 \%)$
$\pi(2) \mathrm{N}(25)-\mathrm{C}(24)$	0.01595	$\mathrm{sp}^{1.72}$	$\mathrm{s}(36.76 \%) \mathrm{p}(63.19 \%)$
$\pi(2) \mathrm{N}(25)-\mathrm{C}(26)$	0.02075	$\mathrm{sp}^{2.05}$	$\mathrm{s}(32.75 \%) \mathrm{p}(67.22 \%)$
$\pi(2) \mathrm{N}(25)-\mathrm{C}(26)$	0.02075	$\mathrm{sp}^{2.85}$	$\mathrm{s}(25.98 \%) \mathrm{p}(73.92 \%)$
$\pi(2) \mathrm{N}(25)-\mathrm{C}(34)$	0.01556	$\mathrm{sp}^{2.28}$	$\mathrm{s}(30.45 \%) \mathrm{p}(69.53 \%)$
$\pi(2) \mathrm{N}(25)-\mathrm{C}(34)$	0.01556	$\mathrm{sp}^{3.57}$	$\mathrm{s}(21.85 \%) \mathrm{p}(78.02 \%)$
$\pi(2) \mathrm{C}(8)-\mathrm{Cl}(83)$	0.01766	$\mathrm{sp}^{3.22}$	$\mathrm{s}(23.68 \%) \mathrm{p}(76.15 \%)$
$\pi(2) \mathrm{C}(8)-\mathrm{Cl}(83)$	0.01766	$\mathrm{sp}^{4.20}$	$\mathrm{s}(19.15 \%) \mathrm{p}(80.34 \%)$
$\pi(2) \mathrm{C}(41)-\mathrm{S}(88)$	0.09765	$\mathrm{sp}^{4.23}$	$\mathrm{s}(19.09 \%) \mathrm{p}(80.80 \%)$
$\pi(2) \mathrm{C}(41)-\mathrm{S}(88)$	0.09765	$\mathrm{sp}^{3.05}$	$\mathrm{s}(24.32 \%) \mathrm{p}(74.18 \%)$
$\pi(2) \mathrm{O}(85)-\mathrm{S}(84)$	0.08787	$\mathrm{sp}^{2.94}$	$\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%)$
$\pi(2) \mathrm{O}(85)-\mathrm{S}(84)$	0.08787	$\mathrm{sp}^{3.41}$	$\mathrm{s}(22.66 \%) \mathrm{p}(77.22 \%)$
$\pi(2) \mathrm{O}(86)-\mathrm{S}(84)$	0.08261	$\mathrm{sp}^{2.80}$	$\mathrm{s}(25.88 \%) \mathrm{p}(72.37 \%)$
$\pi(2) \mathrm{O}(86)-\mathrm{S}(84)$	0.08261	$\mathrm{sp}^{3.19}$	$\mathrm{s}(23.84 \%) \mathrm{p}(76.03 \%)$
$\pi(2) \mathrm{O}(87)-\mathrm{S}(84)$	0.08660	$\mathrm{sp}^{2.90}$	$\mathrm{s}(25.16 \%) \mathrm{p}(73.00 \%)$
$\pi(2) \mathrm{O}(87)-\mathrm{S}(84)$	0.08660	$\mathrm{sp}^{3.39}$	$\mathrm{s}(22.74 \%) \mathrm{p}(77.14 \%)$
$\pi(2) \mathrm{O}(89)-\mathrm{S}(88)$	0.08152	$\mathrm{sp}^{2.77}$	$\mathrm{s}(26.06 \%) \mathrm{p}(72.21 \%)$
$\pi(2) \mathrm{O}(89)-\mathrm{S}(88)$	0.08152	$\mathrm{sp}^{3.17}$	$\mathrm{s}(23.95 \%) \mathrm{p}(75.92 \%)$
$\pi(2) \mathrm{O}(90)-\mathrm{S}(88)$	0.08696	$\mathrm{sp}^{2.94}$	$\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%)$
$\pi(2) \mathrm{O}(90)-\mathrm{S}(88)$	0.08696	$\mathrm{sp}^{3.41}$	$\mathrm{s}(22.67 \%) \mathrm{p}(77.20 \%)$
$\pi(2) \mathrm{O}(91)-\mathrm{S}(88)$	0.08797	$\mathrm{sp}^{2.94}$	$\mathrm{s}(24.90 \%) \mathrm{p}(73.27 \%)$
$\pi(2) \mathrm{O}(91)-\mathrm{S}(88)$	0.08797	$\mathrm{sp}^{3.42}$	$\mathrm{s}(22.60 \%) \mathrm{p}(77.27 \%)$

Table S2 lists the calculated occupancies of natural orbitals. Three classes of NBOs are included, the Lewis-type orbitals, the valence non-Lewis orbital's and the Rydberg NBOs, which originate from orbitals outside the atomic valence shell. The calculated natural hybrids on atoms are also given in Table 6. As seen from Table 9, the $\sigma C(13)-N(14)$ bond is formed from sp ${ }^{3.43}$ and $\mathrm{sp}^{2.12}$ hybrids on carbon and nitrogen atoms (which is the mixture of $\mathrm{s}(22.56 \%) \mathrm{p}(77.32 \%)$ and $\mathrm{s}(32.04 \%) \mathrm{p}(67.94 \%))$. This NBO corresponds to a $\sigma(\mathrm{C}-\mathrm{N})$ bond with approximate composition of $0.6120 \mathrm{C}\left(\mathrm{sp}^{3.43}\right)+0.7909 \mathrm{~N}\left(\mathrm{sp}^{2.12}\right)$. The weights are obtained from the squares of the coefficients as $(0.6120)^{2}=0.3745$, corresponding to $37,45 \%$ localization on carbon $C(13)$. In a similar way the 62.54% localization on nitrogen is obtained. Overall, this describes a polar $\sigma(\mathrm{C}-\mathrm{N})$ bond. The $\sigma \mathrm{C}(15)-\mathrm{N}(14)$ bond is formed from sp ${ }^{1.84}$ and $\mathrm{sp}^{2.53}$ hybrids on carbon and nitrogen atoms (which is the mixture of $s(35.21 \%) p(64.75 \%)$ and $s(28.30 \%) p(71.61 \%)$). The $\sigma \mathrm{C}(38)-\mathrm{N}(14)$ bond is formed from $\mathrm{sp}^{2.14}$ and $\mathrm{sp}^{3.28}$ hybrids on carbon and nitrogen atoms
(which is the mixture of $\mathrm{s}(31.85 \%) \mathrm{p}(68.13 \%)$ and $\mathrm{s}(23.32 \%) \mathrm{p}(76.56 \%)$). The $\sigma \mathrm{N}(25)-\mathrm{C}(24)$ bond is formed from sp ${ }^{2.42}$ and $\mathrm{sp}^{1.72}$ hybrids on nitrogen and carbon atoms (which is the mixture of $\mathrm{s}(29.20 \%) \mathrm{p}(70.70 \%)$ and $\mathrm{s}(36.76 \%) \mathrm{p}(63.19 \%))$. The $\sigma \mathrm{N}(25)-\mathrm{C}(26)$ bond is formed from $\mathrm{sp}^{2.05}$ and $\mathrm{sp}^{2.85}$ hybrids on nitrogen and carbon atoms (which is the mixture of $\mathrm{s}(32.75 \%)$ $\mathrm{p}(67.22 \%)$ and $\mathrm{s}(25.98 \%) \mathrm{p}(73.92 \%))$. The $\sigma \mathrm{N}(25)-\mathrm{C}(34)$ bond is formed from $\mathrm{sp}^{2.28}$ and $\mathrm{sp}^{3.57}$ hybrids on nitrogen and carbon atoms (which is the mixture of $\mathrm{s}(30.45 \%) \mathrm{p}(69.53 \%)$ and $\mathrm{s}(21.85 \%) \mathrm{p}(78.02 \%)$). The $\sigma \mathrm{C}(8)-\mathrm{Cl}(83)$ bond is formed from $\mathrm{sp}^{3.22}$ and $\mathrm{sp}^{4.20}$ hybrids on carbon and chloride atoms (which is the mixture of $\mathrm{s}(23.68 \%) \mathrm{p}(76.15 \%)$ and $\mathrm{s}(19.15 \%)$ $\mathrm{p}(80.34 \%)$). This NBO corresponds to a $\sigma(\mathrm{C}-\mathrm{Cl})$ bond with approximate composition of 0.6737 $\mathrm{C}\left(\mathrm{sp}^{3.22}\right)+0.7390 \mathrm{Cl}\left(\mathrm{sp}^{4.20}\right)$. The weights are obtained from the squares of the coefficients as $(0.6737)^{2}=0.4538$, corresponding to 45.38% localization on carbon $C(8)$. In a similar way the 54.61% localization on Cl is obtained. Overall, this describes a polar $\sigma(\mathrm{C}-\mathrm{Cl})$ bond. The $\sigma \mathrm{C}(41)$ $-\mathrm{S}(88)$ bond is formed from $\mathrm{sp}^{4.23}$ and $\mathrm{sp}^{3.05}$ hybrids on carbon and sulfur atoms (which is the mixture of $s(19.09 \%) p(80.80 \%)$ and $s(24.32 \%) p(74.18 \%)$). This NBO corresponds to a $\sigma(\mathrm{C}-\mathrm{S})$ bond with approximate composition of $0.7138 \mathrm{C}\left(\mathrm{sp}^{4.23}\right)+0.7003 \mathrm{Cl}\left(\mathrm{sp}^{3.05}\right)$. The weights are obtained from the squares of the coefficients as $(0.7138)^{2}=0.5095$, corresponding to 50.95% localization on carbon $C(41)$. In a similar way the 49.05% localization on S is obtained. Overall, this describes a polar $\sigma(\mathrm{C}-\mathrm{S})$ bond. The $\sigma \mathrm{O}(85)-\mathrm{S}(84)$ bond is formed from $\mathrm{sp}^{2.94}$ and $\mathrm{sp}^{3.41}$ hybrids on sulfur and oxygen atoms (which is the mixture of $\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%$) and $\mathrm{s}(22.66 \%) \mathrm{p}(77.22 \%))$. This NBO corresponds to a $\sigma(\mathrm{O}-\mathrm{S})$ bond with approximate composition of $0.5876 \mathrm{~S}\left(\mathrm{sp}^{2.94}\right)+0.8092 \mathrm{O}\left(\mathrm{sp}^{3.41}\right)$. The weights are obtained from the squares of the coefficients as $(0.5876)^{2}=0.3452$, corresponding to 34.52% localization on sulfur $\mathrm{S}(84)$. In a similar way the 65.48% localization on O is obtained. Overall, this describes a polar $\sigma(\mathrm{O}-\mathrm{S})$ bond. The $\sigma(1) \mathrm{O}(86)-\mathrm{S}(84)$ bond is formed from $\mathrm{sp}^{2.80}$ and $\mathrm{sp}^{3.19}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(25.88 \%) \mathrm{p}(72.37 \%)$ and $\mathrm{s}(23.84 \%) \mathrm{p}(76.03 \%)$). The $\sigma \mathrm{O}(87)-$ $\mathrm{S}(84)$ bond is formed from $\mathrm{sp}^{2.90}$ and $\mathrm{sp}^{3.39}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(25.16 \%) \mathrm{p}(73.00 \%)$ and $\mathrm{s}(22.74 \%) \mathrm{p}(77.14 \%)$). The $\sigma \mathrm{O}(89)-\mathrm{S}(88)$ bond is formed from $\mathrm{sp}^{2.77}$ and $\mathrm{sp}^{3.17}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(26.06 \%)$ $p(72.21 \%)$ and $s(23.95 \%) p(75.92 \%))$. The $\sigma O(90)-S(88)$ bond is formed from $\mathrm{sp}^{2.94}$ and $\mathrm{sp}^{3.41}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%$) and $\mathrm{s}(22.67 \%) \mathrm{p}(77.20 \%))$. The $\sigma \mathrm{O}(91)-\mathrm{S}(88)$ bond is formed from $\mathrm{sp}^{2.94}$ and $\mathrm{sp}^{3.42}$ hybrids on
oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(24.90 \%) \mathrm{p}(73.27 \%)$ and $\mathrm{s}(22.60 \%)$ $\mathrm{p}(77.27 \%)$). The $\pi \mathrm{C}(13)-\mathrm{N}(14)$ bond is formed from $\mathrm{sp}^{3.43}$ and $\mathrm{sp}^{2.12}$ hybrids on carbon and nitrogen atoms (which is the mixture of $\mathrm{s}(22.56 \%) \mathrm{p}(77.32 \%)$ and $\mathrm{s}(32.04 \%) \mathrm{p}(67.94 \%)$). The $\pi \mathrm{C}(15)-\mathrm{N}(14)$ bond is formed from $\mathrm{sp}^{1.84}$ and $\mathrm{sp}^{2.53}$ hybrids on carbon and nitrogen atoms (which is the mixture of $s(35.21 \%) p(64.75 \%)$ and $s(28.30 \%) p(71.61 \%)$). The $\pi C(38)-N(14)$ bond is formed from $\mathrm{sp}^{2.14}$ and $\mathrm{sp}^{3.28}$ hybrids on carbon and nitrogen atoms (which is the mixture of $\mathrm{s}(31.85 \%) \mathrm{p}(68.13 \%)$ and $\mathrm{s}(23.32 \%) \mathrm{p}(76.56 \%))$. The $\pi \mathrm{N}(25)-\mathrm{C}(24)$ bond is formed from $\mathrm{sp}^{2.42}$ and $\mathrm{sp}^{1.72}$ hybrids on nitrogen and carbon atoms (which is the mixture of $\mathrm{s}(29.20 \%)$ $\mathrm{p}(70.70 \%)$ and $\mathrm{s}(36.76 \%) \mathrm{p}(63.19 \%))$. The $\pi \mathrm{N}(25)-\mathrm{C}(26)$ bond is formed from $\mathrm{sp}^{2.05}$ and $\mathrm{sp}^{2.85}$ hybrids on nitrogen and carbon atoms (which is the mixture of $\mathrm{s}(32.75 \%) \mathrm{p}(67.22 \%)$ and $\mathrm{s}(25.98 \%) \mathrm{p}(73.92 \%))$. The $\pi \mathrm{N}(25)-\mathrm{C}(34)$ bond is formed from $\mathrm{sp}^{2.28}$ and $\mathrm{sp}^{3.57}$ hybrids on nitrogen and carbon atoms (which is the mixture of $\mathrm{s}(30.45 \%) \mathrm{p}(69.53 \%)$ and $\mathrm{s}(21.85 \%)$ $\mathrm{p}(78.02 \%)$). The $\pi \mathrm{C}(8)-\mathrm{Cl}(83)$ bond is formed from $\mathrm{sp}^{3.22}$ and $\mathrm{sp}^{4.20}$ hybrids on carbon and chloride atoms (which is the mixture of $\mathrm{s}(23.68 \%) \mathrm{p}(76.15 \%)$ and $\mathrm{s}(19.15 \%) \mathrm{p}(80.34 \%)$). The $\pi \mathrm{C}(41)-\mathrm{S}(88)$ bond is formed from $\mathrm{sp}^{4.23}$ and $\mathrm{sp}^{3.05}$ hybrids on carbon and sulfur atoms (which is the mixture of $\mathrm{s}(19.09 \%) \mathrm{p}(80.80 \%)$ and $\mathrm{s}(24.32 \%) \mathrm{p}(74.18 \%))$. The $\pi \mathrm{O}(85)-\mathrm{S}(84)$ bond is formed from $\mathrm{sp}^{2.94}$ and $\mathrm{sp}^{3.41}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%)$ and $\mathrm{s}(22.66 \%) \mathrm{p}(77.22 \%)$). The $\pi \mathrm{O}(86)-\mathrm{S}(84)$ bond is formed from $\mathrm{sp}^{2.80}$ and $\mathrm{sp}^{3.19}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(25.88 \%) \mathrm{p}(72.37 \%)$ and $\mathrm{s}(23.84 \%) \mathrm{p}(76.03 \%)$). The $\pi \mathrm{O}(87)-\mathrm{S}(84)$ bond is formed from $\mathrm{sp}^{2.90}$ and $\mathrm{sp}^{3.39}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(25.16 \%) \mathrm{p}(73.00 \%)$ and $\mathrm{s}(22.74 \%)$ $\mathrm{p}(77.14 \%)$). The $\pi \mathrm{O}(89)-\mathrm{S}(88)$ bond is formed from $\mathrm{sp}^{2.77}$ and $\mathrm{sp}^{3.17}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(26.06 \%) \mathrm{p}(72.21 \%)$ and $\mathrm{s}(23.95 \%) \mathrm{p}(75.92 \%)$). The $\pi \mathrm{O}(90)-\mathrm{S}(88)$ bond is formed from $\mathrm{sp}^{2.94}$ and $\mathrm{sp}^{3.41}$ hybrids on oxygen and sulfur atoms (which is the mixture of $\mathrm{s}(24.94 \%) \mathrm{p}(73.22 \%)$ and $\mathrm{s}(22.67 \%) \mathrm{p}(77.20 \%))$. The $\pi \mathrm{O}(91)-\mathrm{S}(88)$ bond is formed from $\mathrm{sp}^{2.94}$ and $\mathrm{sp}^{3.42}$ hybrids on oxygen and sulfur atoms (which is the mixture of $s(24.90 \%) p(73.27 \%)$ and $s(22.60 \%) p(77.27 \%))$.

