Supplementary Materials

for

Performance and mass transfer of aqueous fluoride removal by

magnetic alumina aerogel

Wen Yang¹, Xiaomin Dou¹*, Yonghuan Li¹, Dinesh Mohan², Charles U. Pittman, Jr.³, Yong Sik Ok⁴

¹College of Environmental Science and Engineering, Beijing Forestry University,

Beijing 100083, P.R. China;

²School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067,

India;

³Department of Chemistry, Mississippi State University, Mississippi State,

Mississippi 39762, United States;

⁴Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701, Korea;

This file contains,

- a) Five tables (Tables S1 S5)
- b) Five figures (Figs. S1 S5)

TABLES:

Table S1 The concentrations of the co-existing anions used in studying interferences of other species with F⁻ adsorption by magnetic alumina aerogel.

Co-existing anions	HCO ₃ -	PO ₄ ³⁻	SO4 ²⁻	SiO ₄ ⁴⁻	NO ₃ -	NO ₂ -	Cl-
Concentrations (mg L ⁻¹)	100	5	300	9	30	30	300

Table S2 BET surface areas and pore properties for alumina, magnetite and magnetic

 aerogel alumina samples

Samples	BET surface area (m ² g ⁻¹)	Pore volume (mL g ⁻¹)	Average BJH pore diameter (nm)	
Alumina aerogel	320.3	1.0	8.8	
Alumina aerogel	2797	1.2	0.8	
(ground for 3 h)	578.7	1.2	9.0	
Magnetite	89.9	0.2	8.4	
Magnetite	02.0	0.2	Q /	
(ground for 3 h)	92.0	0.2	0.4	
Magnetic aerogel	215.1	0.4	6.1	
Magnetic aerogel	222.0	0.4	5.0	
(ground for 3 h)	223.9	0.4	3.9	
Magnetic aerogel	242.2	0.5	7.2	
after adsorption of F-	243.2	0.5	1.5	
Magnetic aerogel				
after adsorption of F-	268.7	0.4	6.0	
(ground for 3 h)				

Samples	Al 2p (%)	Fe 2p (%)	F 1s (%)	O 1s (%)
Alumina aerogel	34.9	0	0	65.1
Alumina aerogel (ground for 3 h)	35.1	0	0	64.9
Magnetite	0	62.3	0	37.7
Magnetite (ground for 3 h)	0	61.4	0	38.6
Magnetic aerogel	20.8	12.6	0	66.6
Magnetic aerogel (ground for 3 h)	20.6	12.9	0	66.5
Magnetic aerogel after adsorption of F ⁻	23.7	8.5	3.1	64.7
Magnetic aerogel after F ⁻ was				
adsorbed	24.1	7.7	2.5	65.6
(ground for 3 h)				

 Table S3 Elemental atomic percentages of pristine aerogel alumina, magnetite and magnetic aerogel alumina samples and magnetic aerogel alumina samples before and after 3 h-grinding

Table S4 The linear fitting parameters for F- adsorption kinetics on the MAA adsorbent

	Pseudo-second-order model				
Initial concentrations (mg L ⁻¹)	k_2 (g mg ⁻¹ h ⁻¹)	q_e (mg g ⁻¹)	<i>R</i> ²		
32.4	0.015	16.1	0.92		
55.7	0.006	33.0	0.98		

Table S5 The water quality conditions of spiked well water used for F⁻ remediation by

 MAA magnetic alumina aerogel

pН	Total As	Cl-	F-	Fe ³⁺	SO4 ²⁻	Na ⁺	K^+	Al^{3+}
	(mg L ⁻¹)							

FIGURES:

Fig. S1 An illustration of the favored core-shell structure of the magnetic aerogel alumina adsorbent

Fig. S2 The effect of MAA dose on its F⁻ removal performance. Initial F⁻ concentrations, 50 mg L⁻¹; adsorbent dose, 0.1-0.7 g L⁻¹; total solution volumes, 100 mL; pH 5.0 ± 0.1 ; temperature, 25 ± 1 °C, and shaking time, 24 h.

Fig. S3 Kinetics of F⁻ adsorption on the magnetic alumina aerogel adsorbent (MAA). The solid lines represent the linear pseudo-second order fittings. Initial F⁻ concentrations, 32 mg L⁻¹ and 56 mg L⁻; adsorbent dose, 0.3 g L⁻¹; total solution volumes, 1 L; pH 5.0 ± 1 ; temperature, 25 ± 1 °C.

Fig. S4 Effect of pH on F⁻ adsorption onto the magnetic alumina aerogel adsorbent (MAA). Initial F⁻ concentrations, 42.2 mg L⁻¹; adsorbent dose, 0.3 g L⁻¹; total solution volumes, 100 mL; pH range, 3 - 10; temperature, 25 ± 1 °C, and shaking time, 24 h.

Fig. S5 Speciation diagram for F^- in water showing the relative proportions of each species. Values were calculated using Visual Minteq v 3.0 with initial $F^- = 10$ mmol L^{-1} , temperature = 25 °C and ion strength was calculated at each point.

Fig. S6 The MAA adsorbent was demonstrated to be used in a magnetic separationenhanced sequencing batch (MSES) mode including four steps, which are (1) influent fill (a), (2) adsorption (b), (3) magnetic separation (c) and (4) treated water withdraw (d), and in a packed bed mode with problems of fluent flow ((e) and (f)).