Electronic Supplementary Information (ESI)

Synthesis of biocompatible polymeric nanomaterial dually loaded

with paclitaxel and nitric oxide for anti-MDR cancer therapy

Jing Fan,^{a,b} Jibin Song,^b Yijing Liu,^bGuocan Yu,^bYing Ma, ^bYan Deng,^a Nongyue He,^{*a} and Fuwu Zhang^{*b}

- ^{a.} State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, Jiangsu,
 P. R. China
- ^{b.} Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA

Table of content

1. ¹H NMR spectrum of PEI-azide (300 MHz, DMSO-D₆)

2. ¹H NMR spectrum of PLLA-alkyne (300 MHz, CDCl₃)

3. ¹H NMR spectrum of mPEG-PEI-PLLA (300 MHz, DMSO-D₆)

4. HPLC chromatograph of mPEG-PEI-PLLA-PTX PBS solution, with PTX appearing at 5.7 min.

5. HPLC traces of different concentrations of PTX (1.95 to 250 μ g/mL) in H₂O/ACN= 1/1 solution.

6. PTX calibration curve. The 228nm peak area at 5.7 minwas utilized to calculate integration area.

7. The release of PTX from mPEG-PEI-PLLA-PTX in pH 7.4 PBS solution

8. NO loading and stability on mPEG-PEI-PLLA polymer via Griess method

9. mPEG-PEI-PLLA-NO PBS solutions(200ug/mL) were treated with UV or sonication for 5min

10. UV-Vis spectrum of IR800 NIR dye before and after conjugation to the particles

11. Two groups of mice were imaged under small animal imaging system to analyze the mPEG-

PEI-PLLA-IR800 diffusion and metabolism in 48 h.

Figure S1.¹H NMR spectrum of PEI-azide (300 MHz, DMSO-D₆).

Figure S2.¹H NMR spectrum of PLLA-alkyne (300 MHz, CDCl₃).

Figure S3.¹H NMR spectrum of mPEG-PEI-PLLA (300 MHz, DMSO-D₆).

Figure S4.HPLC chromatograph of mPEG-PEI-PLLA-PTX PBS solution, with PTX appearing at 5.7 min.

Figure S5.HPLC traces of different concentrations of PTX (1.95 to 250 μ g/mL) in H₂O/ACN= 1/1 solution.

Figure S6.PTX calibration curve. The 228nm peak area at 5.7 minwas utilized to calculate integration area.

Figure S7.The release of PTX from mPEG-PEI-PLLA-PTX in pH 7.4 PBS solution.

Figure S8.NO loading and stability on mPEG-PEI-PLLA polymer via Griess method.

Figure S9.mPEG-PEI-PLLA-NO PBS solutions(200ug/mL) were treated with UV or sonication for 5min.

Figure S10.UV-Vis spectrum of IR800 NIR dye before and after conjugation to the particles.

Figure S11. Two groups of mice were imaged under small animal imaging system to analyze the mPEG-PEI-PLLA-IR800 diffusion and metabolism in 48 h. The left mice was treated by mPEG-PEI-PLLA and the right mice was treated by mPEG-PEI-PLLA-IR800. Right: fluorescent channel imaging; Left: merge with bright-field imaging.