Influence of Cysteine and Bovine Serum Albumin on Silver Nanoparticle Stability, Dissolution, and Toxicity to *Phanerochaete chrysosporium*

Feng Yi,^{a,b} Guiqiu Chen, *,a,b Guangming Zeng,*,a,b Zhi Guo,^{a,b} Weiwei Liu,^{a,b} Zhenzhen Huang,^{a,b} Liang Hu,^{a,b} kai He^{a,b}

^aCollege of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R.

China

^bKey Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of

Education, Changsha 410082, P.R. China

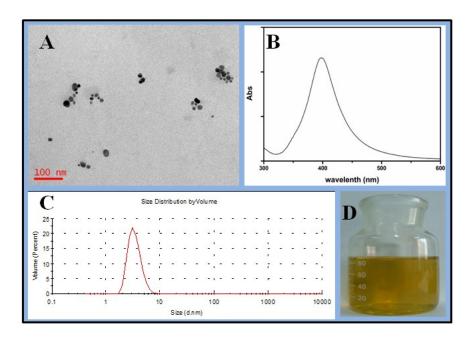


Figure S1. (A) Transmission electron microscopy (TEM) micrographs of citrate-stabilized AgNPs. (B) UV-vis spectrum of citrate-stabilized AgNPs. (C) Size distribution by volume of citrate-stabilized AgNPs. (D) Colloidal suspension of stock citrate-stabilized AgNPs.

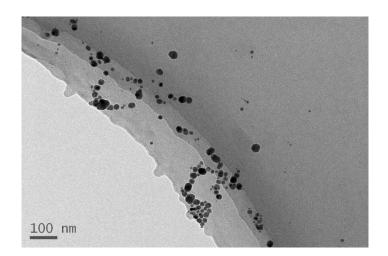


Figure S2. Transmission electron microscopy (TEM) micrographs of AgNPs after addition of CYS.

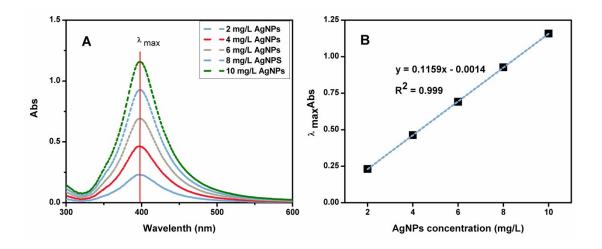


Figure S3. (A) UV-vis absorption spectra of various concentrations of citrate-stabilized AgNP suspension in ultrapure water. (B) 20 nm citrate-stabilized AgNP concentrations versus the intensity of the λ_{max} absorbance.

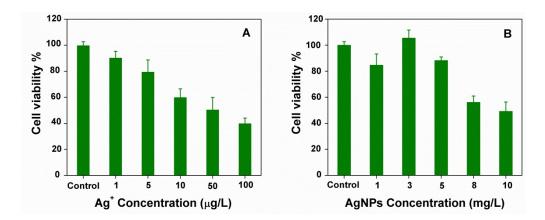


Figure S4. Concentration-dependent effects on cell viability in P. chrysosporium. The cells were exposed to (A) dissolved Ag^+ (as $AgNO_3$), or (B) citrate-stabilized AgNPs. Error bars are sample standard deviations from triplicate measurements. Exposure time = 12 h.

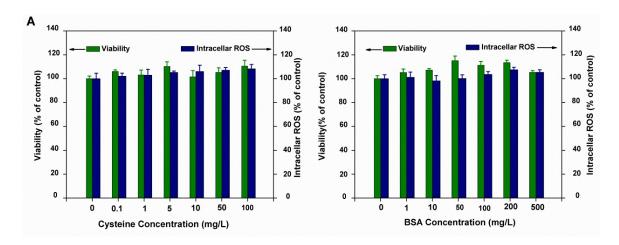


Figure S5. Concentration-dependent effects on cell viability and intracellular ROS level in P. chrysosporium. The cells were exposed to (A) CYS, (B) BSA

able S1.FWHM (nm) of AgNPs in the presence of CYS						
CYS concentration	0 h	3 h	6 h	9 h	12 h	
0.1 mg/L	72 ± 2.3	78 ± 0	82 ± 2.3	84 ± 0.6	84 ± 1.1	
10 mg/L	82 ± 1.1	90 ± 0.9	94 ± 0.80	96 ± 0.9	102 ± 1.7	
50 mg/L	82 ± 2.5	88 ± 1.3	96 ± 1.1	100 ± 1.0	106 ± 1.5	
100 mg/L	86 ± 1.9	90 ± 0.8	100 ± 0.7	102 ± 0.9	102 ± 1.0	

able S2.FWHM (nm) of AgNPs in the presence of BSA						
BSA concentration	0 h	3 h	6 h	9 h	12 h	
1 mg/L	62 ± 0	64 ± 1.5	66 ± 0.7	66 ± 1.0	68 ± 0.9	
10 mg/L	62 ± 0.9	66 ± 0	66 ±0.7	68 ± 1.1	68± 0.7	
100 mg/L	64 ± 1.0	66 ± 0	66 ± 0.9	70 ± 0.6	72 ± 1.2	
500 mg/L	66 ± 1.7	68 ± 0.9	70 ± 1.2	70± 2.5	72 ± 1.7	