Electronic Supplementary Information

Nonprecious mixed oxide catalysts Co3AlO and Co2NiAlO derived from nanoflowerlike cobalt-based hydrotalcites for highly efficient oxidation of nitric oxide

Ting Fan, Liguang Dou and Hui Zhang*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Figure S1 TG/DTG profiles of the hydrotalcite precursors Co3Al-HT (a) and Co2NiAl-HT (b).

Figure S2 Mapping of (A) the hydrotalcite precursor Co3Al-HT and the catalysts Co3AlO-500 and Co3AlO-800 and (B) the precursor Co2NiAl-HT and the catalysts Co2NiAlO-500 and Co2NiAlO-800.

Figure S3 HRTEM lattice image and corresponding fast Fourier transform (FFT) pattern

(inset) of Co2NiAlO-800.

Figure S4 SEM images of the used catalysts Co3AlO-500-u (a) and Co2NiAlO-500-u (b)

the

after

stability

tests.

Samples	d ₀₀₃ /nm	d ₁₁₀ /nm	D ₀₀₃ /nm ^a	D ₁₁₀ /nm ^a
Co3Al-HT	0.76	0.1535	10.30	16.82
Co2NiAl-HT	0.75	0.1525	7.98	15.17

Table S1 Crystal structure parameters of the hydrotalcite precursors Co3Al-HT andCo2NiAl-HT

^{*a*} Upon the Scherrer formula $D = 0.89\lambda(\beta\cos\theta)$ (λ is the X-ray wavelength (0.1542 nm), θ is the diffraction angle and β is the full width at half maximum (in radian))

Table S2 The calculated results of the apparent activation energy (E_a) and pre-exponentialfactor (A) of the catalysts Co3AlO-500 and Co2NiAlO-500

Temperature (°C)	Conversion (%)	Rate (mol $g^{-1} s^{-1}$)
150	6.92	4.29×10 ⁻⁸
160	8.13	5.04×10 ⁻⁸
170	9.50	5.89×10 ⁻⁸
180	11.51	7.14×10 ⁻⁸
190	14.24	8.83×10 ⁻⁸

Catalyst Co3AlO-500: Apparent activation energy E_a = 29.12 kJ/mol

Pre-exponential factor $A = 19.44 \text{ mol } \text{g}^{-1} \text{ s}^{-1}$

Temperature (°C)	Conversion (%)	Rate (mol $g^{-1} s^{-1}$)
150	8.93	5.54×10 ⁻⁸
160	10.75	6.67×10 ⁻⁸
170	12.84	7.96×10 ⁻⁸
180	15.43	9.57×10 ⁻⁸
190	18.65	11.57×10 ⁻⁸

Catalyst Co2NiAlO-500: Apparent activation energy E_a = 29.84 kJ/mol

Pre-exponential factor $A = 18.39 \text{ mol } \text{g}^{-1} \text{ s}^{-1}$

The apparent activation energy E_a and pre-exponential factor A were obtained by the Arrhenius plot of Ink vs (-1/T). Reaction rate constant k was calculated from reaction rate $r = k P_{NO}^a P_{O_2}^b$, where a and b were the reaction orders determined from Figure 8 (D and E).