The sorption of nonsteroidal anti-inflammatory drugs: diclofenac and

naproxen onto UV and/or H₂O₂ treated MWCNT-COOH and MWCNT-OH

Bożena Czech*

Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Marii Curie-

Skłodowskiej 3, 20-031 Lublin, Poland

*corresponding author: e-mail@hektor.umcs.lublin.pl, phone +48 81 537 55 54, fax +48 81 537 55 65

Journal name: RSC Advances Number of pages: 6 Number of tables: 4 Number of figures: 10 Date of preparation: September 2016.

Experimental

Chemicals and CNT

Diclofenac sodium ($C_{14}H_{10}Cl_2NNaO_2$, pKa 4.2) and naproxen ($C_{14}H_{14}O_3$, pKa 4.2) were purchased from Sigma-Aldrich (Poland). Multi-walled carbon nanotubes with -COOH groups (referred as CNTCOOH) and -OH groups (referred as CNTOH) were supplied by Timesnano, China. CNTs are characterized by >95% purity, 10-20 nm outer diameter and 10-30 µm length. The surface area (S_{BET}) of all studied materials was in the range of 159.1 to 208.8 m²·g⁻¹.¹ The content of surface groups (XPS & Titration): -OH in CNTOH or -COOH in CNTCOOH was 3.06 wt% and 2.00 wt%, respectively. The procedure of CNT wastewater treatment was described in.¹ For the treatment of wastewater containing functionalized CNT, 0.35wt% addition of H₂O₂ (POCH, Poland) and/or 5 hours of UV irradiation (254 nm, 15 W) were applied. CNT after treatment were labeled as follows: CNTOH-UV or CNTCOOH-UV – indicating UV irradiated CNT; CNTOH-H₂O₂ or CNTCOOH-H₂O₂ – indicating H₂O₂ treatment of CNT and CNTOH-UV+H₂O₂ or CNTCOOH-H₂O₂ treatment.

Sorption models

The equilibrium sorption capacity was calculated using Eq. (1):

$$Q_{e} = \frac{(C_{0} - C_{e}) * V}{m}$$
(1)

where Q_e is the equilibrium solid phase concentration of DCF or NPX (mg·g⁻¹); C_o and C_e are the DCF/NPX concentrations of the initial and equilibrium aqueous phases (mg·L⁻¹), respectively; V is the volume of solution (L), and M is the mass of adsorbent (g).

The Freundlich model describing sorption on heterogeneous surfaces, as well as multilayer sorption is expressed by Eq. (2):

$$Q_F = Q_F C_e^{1/n}$$
(2)

where Q_F is the relative adsorption capacity (mg·g⁻¹), and n is a parameter related to linearity.

The sorption on planar surfaces and monolayer adsorption are described by the Langmuir model given by Eq. (3):

$$Q_L = \frac{Q_L K_L C_e}{1 + K_L C_e} \tag{3}$$

where Q_L is the maximum amount of DCF or NPX adsorbed (mg·g⁻¹), and K_L is the sorption equilibrium constant (L·mg⁻¹).

The essential features of the Langmuir model were expressed in terms of a separation factor (R_L) to determine whether the adsorption system was favorable or unfavorable in batch experiments, and is given by Eq. (4):

$$R_L = \frac{1}{(1 + K_L C_0)}$$
(4)

The Temkin model related to the heat of sorption is expressed by Eq. (5):

$$Q_T = \frac{RT}{b} ln^{(0)} (AC_e)$$
(5)

where R is the universal gas constant, T is the absolute temperature, b is the heat of adsorption, and A is the binding constant ($L^{mg^{-1}}$).

The Dubinin–Radushkevich model describing sorption onto porous structure of the sorbent is given by Eq. (6):

$$Q_D = Q_D exp^{\text{res}} \left(-B_D \left[RT \ln \left(1 + \frac{1}{C_e} \right) \right]^2 \right)$$
(6)

where Q_D is the adsorption capacity (mg·g⁻¹), B_D is the mean free energy of sorption, and E is the bonding energy for the ion-exchange mechanism calculated using Eq. (7):²

$$E = \frac{1}{\sqrt{2B_D}}$$
(7)

Sorption kinetics

For the sorption of PPCPs there were applied 2 the most popular mathematical models of Lagergren and Ho-McKay (pseudo-first and pseudo-second order). The first order kinetics is described as follows (Eq. 9):

$$\log (Q_e - Q_t) = \log Q_e - \frac{\kappa_1}{2.303} t_{(8)}$$

where Qe and Qt are the amount of PPCPs sorbed at equilibrium and after time t (mg·g⁻¹). The value of k_1 was obtained from the linear relationship $log(Q_e - Q_t) = f(t)$ (Fig.S1-3, Fig. S6-8). The pseudo-second order reaction is described (Eq. 10):

$$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{1}{Q_e} t$$
(9)

where k_2 (g·mg⁻¹·min⁻¹) is the adsorption rate constant of pseudo-second order adsorption rate. The k_2 values were obtained from the relations of t/Q_t vs. t.

Elovich (Eq. 10) and Intraparticle Diffusion models (IPD, Eq. 11).

$$\frac{dq}{dt} = \alpha e^{-\beta q_t}$$
(10)

 $q_t = k_{id} \sqrt{t + C}$ (11)

where α is initial adsorption rate and β is the ratio between the surface coverage and the activation energy, K_{id} is the rate constant for intraparticle diffusion (mg·g⁻¹ min^{-1/2}), *t* is the time (min), and *C* is intercept.³

PFO and PSO models described sorption under non-equilibrium conditions.³ Elovich model describes chemical adsorption mechanism.⁴ IPD model considers the external mass transfer from the solution to the liquid-solid interface and the diffusion inside the pores.⁵

Results and discussion

Table S1. The physicochemical properties of CNTOHs and CNTCCOHs.

Carbon nanotubes	S _{BET}	V_{p}	D_p	V _m	с	н	0	N	ID/IG	D _A	ζ	М
CNTOH	208.8	1.208	115.6	0.06306	96.49	0	3.055	0.46	1.05	1812.7	-13.12	-0.93
CNTOH-UV	176.7	1.173	132.7	0.05522	94.18	0.29	5.09	0.44	1.1	6383.7	-6.4	-0.45
CNTOH-H ₂ O ₂	165.7	0.891	107.6	0.05115	96.11	0	3.47	0.415	1.18	5239.7	-8.06	-0.57
CNTOH-UV+H ₂ O ₂	179	1.249	139.5	0.05377	97.43	0	2.145	0.425	1.28	1765.5	-8.5	-0.61
CNTCOOH	166.7	1.475	177	0.04997	94.51	0	5.01	0.485	1.17	1840.6	-16.05	-1.14
CNTCOOH-UV	179.2	1.135	126.7	0.05644	95.51	0	3.96	0.53	1.12	615.1	-4.14	-0.29
CNTCOOH-H ₂ O ₂	159.1	1.012	127.2	0.05115	94.45	0.17	4.965	0.42	1.27	5968.6	13.22	0.94
CNTCOOH-UV+H ₂ O ₂	167.1	1.1	131.7	0.05265	94.43	0.14	4.975	0.455	1.08	2640	8.65	0.61

 S_{BET} BET surface area – $m^2 g^{-1}$, V_p – pore volume – $cm^3 g^{-1}$, V_m – micropore volume – $cm^3 \cdot g^{-1}$, C,H,N,O – elemental composition – %, DA – aggregates diameter – nm, ζ - zeta potential - mV, M – mobility – $m^2 \cdot s^{-2} \cdot V^{-1}$

Fig. S1. The isotherm of NPX sorption over treated CNTOHs: (a) Langmuir, (b) Temkin, (c) Dubinin-Radushkevich. Lines represent the model predicted data fittings. Insets show the linearized form of adsorption isotherms.

Table S2. Linear parameters of Langmuir, Temkin and Dubinin-Radushkevich isotherms of NPX sorption over UV and/or H_2O_2 treated CNTOHs.

			Langn	nuir					Temkin		
	KL	STE	Q_L	STE	R ²	R _L ·10 ⁻⁴	Kτ	STE	b	STE	R ²
CNTOH	0,0325	0,0013	2000	76,950	0,1835	0,00005	1,162	0,045	163,22	6,28	0,9171
CNTOH- UV	0,1086	0,0018	416,667	6,782	0,7892	0,00024	1,173	0,019	87,463	1,42	0,8817
CNTOH- H ₂ O ₂	0,0468	0,0004	714,286	5,982	0,4427	0,00014	1,357	0,011	182,94	1,53	0,8183
CNTOH- UV+H ₂ O ₂	0,1	0,0032	454,545	14,580	0,8453	0,00022	1,183	0,038	89,82	2,88	0,9091
		Dubii	nin-Radushke	evich		_					
	K _{DR}	STE	Ε	STE	R ²	_					
CNTOH	5·10 ⁻⁸	1,92 [.] 10 ⁻⁹	0,1703	0,0066	0,8346	-					
CNTOH- UV	5·10 ⁻⁸	8,14 [.] 10 ⁻¹⁰	0,1261	0,0021	0,8512						
CNTOH- H ₂ O ₂	8·10 ⁻⁷	6,7 [.] 10 ⁻⁹	0,0496	0,0004	0,8256						
CNTOH- UV+H ₂ O ₂	1.10-6	3,21 [.] 10 ⁻⁸	0,0419	0,0013	0,8234	_					

 $K_{L, K_{DR}}$ - $mg^{\cdot}g^{-1}$, Q_{L} - $L^{\cdot}g^{-1}$, STE standard error

Fig. S2. The isotherm of DCF sorption over treated CNTCOOHs: a) Langmuir, b) Dubinin-Radushkevich. Lines represent the model predicted data fittings. Insets show the linearized form of adsorption isotherms.

Table S3. Linear parameters of Langmuir and Dubinin-Radushkevich isotherms of NPX sorption over UV and/or H₂O₂ treated CNTCOOHs.

	Langmuir								Dubinin-Radushkevich					
	KL	STE	QL	STE	R ²	RL	K _{DR}	STE	E)	STE	R ²			
CNTCOOH	0.072	0.003	1428.6	55.0	0.8901	0.00007	4.10-7	1.10-8	0.039	0.001	0.9212			
CNTCOOH-H ₂ O ₂	0.743	0.012	384.6	6.3	0.8506	0.00026	2.10-6	1.10-8	0.119	0.002	0.1480			

CNTCOOH-UV	0.050	0.000	1250.0	10.5	0.4258	0.00008	6·10 ⁻⁷	1·10 ⁻⁹	0.043	0.000	0.8278
CNTCOOH-H ₂ O ₂ +UV	0.177	0.006	588.2	18.9	0.8226	0.00017	3·10 ⁻⁷	1·10 ⁻⁹	0.043	0.001	0.8312

K ₁ K _r	₀ - ma`a⁻¹.	. Q₁ - L`a ⁻¹ .	$E - kJ \cdot a^{-1}$.	STE standard	error
-------------------------------	-------------	----------------------------	-------------------------	--------------	-------

Fig. S3. The isotherm of DCF sorption over treated CNTOHs: (a) Langmuir, (b) Temkin. Lines represent the model predicted data fittings. Insets show the linearized form of adsorption isotherms.

Table S4. Linear parameters of Langmuir and Dubinin–Radushkevich isotherms of DCF sorption over UV and/or H_2O_2 treated CNTOHs.

	Langmuir								Dubinin-Radushkevich					
	KL	STE	Q_L	STE	R ²	RL	Kτ	STE	b	STE	R ²			
CNTCOOH	0.0043	0.000	20000	769.5	0.0067	0.000005	1.256	0.048	261.69	10.07	0.8175			
CNTCOOH-H ₂ O ₂	0.0667	0.001	2500	40.7	0.0743	0.000040	11.270	0.183	233.79	3.81	0.0594			
CNTCOOH-UV	0.1795	0.002	1428.6	12.0	0.8919	0.000070	4.029	0.034	172.02	1.44	0.9453			
CNTCOOH-H ₂ O ₂ +UV	0.2727	0.009	1111.1	35.6	0.8749	0.000090	4.611	0.148	171.51	5.50	0.952			

 $K_L, K_t - mg^{-1}, Q_L - L^{-1}, STE$ standard error

Fig. S4. The isotherm of DCF sorption over treated CNTOHs: (a) Langmuir, (b) Temkin. Lines represent the model predicted data fittings. Insets show the linearized form of adsorption isotherms.

Table S5. Linear parameters of Langmuir, Temkin and Dubinin-Radushkevich isotherms of DCF sorption over UV and/or H₂O₂ treated CNTCOOHs.

DCF	Langmuir							Temkin					
	KL	STE	QL	STE	<i>R</i> ²	RL	K _T	STE	b	STE	R ²		
CNTCOOH	0.130	0.005	1111.11	42.8	0.3403	0.000090	1.954	0.075	205.95	7.92	0.7555		
CNTCOOH-H ₂ O ₂	0.333	0.005	909.09	14.8	0.9069	0.000110	4.811	0.078	159.12	2.59	0.9457		
CNTCOOH-UV	0.257	0.002	1111.11	9.3	0.8445	0.000090	4.572	0.038	166.57	1.40	0.9332		
CNTCOOH- H ₂ O ₂ +UV	0.250	0.008	1111.11	35.6	0.6651	0.000090	4.449	0.143	169.61	5.44	0.8894		

 K_L - $mg^{-1}g^{-1}$, STE standard error Q_{L^-} - L^-g^{-1} , Q_D - mg^-g^{-1} , E - kJ^-g^{-1}

References

- 1 B. Czech, P. Oleszczuk and A. Wiącek, *Environ. Pollut.*, 2015, **200**, 161–167.
- 2 M. Ahmad, S. S. Lee, A. U. Rajapaksha, M. Vithanage, M. Zhang, J. S. Cho, S.-E. Lee and Y. S. Ok, *Bioresour. Technol.*, 2013, 143, 615–622.
- 3 A. N. Módenes, F. R. Espinoza-Quiñones, A. Colombo, C. L. Geraldi and D. E. G. Trigueros, *J. Environ. Manage.*, 2015, **154**, 22–32.
- 4 F.-C. Wu, R.-L. Tseng and R.-S. Juang, *Chem. Eng. J.*, 2009, **150**, 366–373.
- 5 D. Kołodyńska, R. Wnętrzak, J. J. Leahy, M. H. B. Hayes, W. Kwapiński and Z. Hubicki, Chem. Eng. J., 2012, 197, 295–305.