Electronic Supplementary Information (ESI)

A thermo-sensitive supramolecular hydrogel derived from an onium salt with the property of solution-gel-crystal transition

Xin-Jian Jia,^a Jinshu Wang,^{*a} Di-Chang Zhong,^b Junshu Wu,^a Bingxin Zhao,^a Daniel den Engelsen^a and Xu-Zhong Luo^{*b}

^a Key Laboratory of Advanced Functional Materials for Ministry of Education,
 College of Materials Science and Engineering, Beijing University of Technology,
 Beijing 100124, China. E-mail: wangjsh@bjut.edu.cn

^b Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Key Laboratory of Jiangxi University for Functional Material Chemistry, Gannan Normal University, Ganzhou 341000, China. E-mail: luoxuzhong@hotmail.com

Fig. S1. (a) Photograph and (b) micrograph of the TTIBD crystals.

Fig. S2. Morphology of the xerogels formed from melamine with salicylic acid, *p*-hydroxybenzoic acid, *m*-hydroxybenzoic acid, orthoboric acid and oxalic acid.

Fig. S3. Simulated and experimental PXRD patterns for the TTIBD crystals.

Fig. S4. DSC thermograms of the TTIBD hydrogels formed at different gelator concentrations: (a) $0.06 \text{ mol}\cdot\text{L}^{-1}$, (b) $0.08 \text{ mol}\cdot\text{L}^{-1}$, (c) $0.10 \text{ mol}\cdot\text{L}^{-1}$, (d) $0.12 \text{ mol}\cdot\text{L}^{-1}$, (e) $0.14 \text{ mol}\cdot\text{L}^{-1}$ and (f) $0.16 \text{ mol}\cdot\text{L}^{-1}$.

Compound	TTIBD
Formula	$C_{10}H_{16}N_6O_4$
F.W.	284.29
<i>T</i> (K)	298 (2)
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> (Å)	21.477 (3)
<i>b</i> (Å)	10.2253 (14)
<i>c</i> (Å)	12.3312 (17)
β (°)	98.717 (3)
$V(Å^3)$	2676.8 (6)
Ζ	8
$D_{\rm c}$ (g cm ⁻³)	1.411
$\mu (\mathrm{mm}^{-1})$	0.111
Data collected/uniq. (R_{int})	7250/2351 (0.0249)
$R_1, wR_2 [I > 2\sigma(I)]$	0.0393, 0.1096
R_1 , wR_2 (all data)	0.0445, 0.1158
GOF	1.027
Residues (e Å ⁻³)	0.138, -0.235

 Table S1. Crystal data and structure refinement for TTIBD.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||\Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma w(F_{o}^{2})^{2}]^{1/2}, w = 1/[\Box^{2}(F_{o})^{2} + (aP)^{2} + bP], \text{ where } P = [(F_{o}^{2}) + 2F_{c}^{2}]/3.$

C1-01	1.2497 (17)	C9—N4	1.3149 (17)
C1-O2	1.2545 (17)	C9-N2	1.3245 (17)
C1-C2	1.5039 (19)	C9-N1	1.3519 (17)
C2-C7	1.377 (2)	C10-N5	1.3211 (17)
C2-C3	1.379 (2)	C10-N2	1.3501 (17)
C3-C4	1.388 (2)	C10-N3	1.3512 (17)
С3—Н3	0.9300	N1-H1	0.8600
C4-C5	1.359 (2)	N4—H4A	0.8600
С4—Н4	0.9300	N4—H4B	0.8600
C5-C6	1.374 (2)	N5-H5A	0.8600
С5—Н5	0.9300	N5-H5B	0.8600
C6-C7	1.380 (2)	N6-H6A	0.8600
С6—Н6	0.9300	N6-H6B	0.8600
С7—Н7	0.9300	O1W—H1WA	0.879 (14)
C8-N6	1.3137 (18)	O1W—H1WB	0.880 (14)
C8-N3	1.3301 (17)	O2W—H2WA	0.874 (15)
C8-N1	1.3610 (17)	O2W—H2WB	0.860 (15)
01—C1—O2	123.27 (12)	N3—C8—N1	121.38 (12)
O1—C1—C2	119.10 (12)	N4—C9—N2	120.41 (12)

Table S2. Selected bond lengths (Å) and angles (°) for TTIBD.

O2—C1—C2	117.57 (12)	N4—C9—N1	117.79 (12)
C7—C2—C3	119.06 (13)	N2—C9—N1	121.80 (11)
C7—C2—C1	120.22 (13)	N5-C10-N2	116.76 (12)
C3—C2—C1	120.71 (13)	N5-C10-N3	117.34 (12)
C2—C3—C4	120.09 (14)	N2-C10-N3	125.90 (11)
С2—С3-Н3	120.0	C9—N1—C8	119.46 (11)
С4—С3—Н3	120.0	C9—N1—H1	120.3
C5—C4—C3	120.47 (15)	C8—N1—H1	120.3
С5—С4—Н4	119.8	C9—N2—C10	115.73 (11)
С3—С4—Н4	119.8	C8—N3—C10	115.63 (11)
C4—C5—C6	119.74 (14)	C9—N4—H4A	120.0
С4—С5—Н5	120.1	C9—N4—H4B	120.0
С6—С5—Н5	120.1	H4A—N4—H4B	120.0
C5—C6—C7	120.27 (16)	C10—N5—H5A	120.0
С5—С6—Н6	119.9	C10—N5—H5B	120.0
С7—С6—Н6	119.9	H5A—N5—H5B	120.0
C2—C7—C6	120.34 (15)	C8—N6—H6A	120.0
С2—С7—Н7	119.8	C8—N6—H6B	120.0
С6—С7—Н7	119.8	H6A—N6—H6B	120.0
N6-C8-N3	121.27 (12)	H1WA—O1W—H1WB	104.2 (14)
N6-C8-N1	117.34 (12)	H2WA—O2W—H2WB	106.2 (16)