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Supporting Information

Table S1: Mechanical properties of pristine polyamide 66 nanofiber (PANF) and composite nanofiber

mats ([I]MgO/PANF and [[JPOM/PANF).

Modulus Tensile stress Tensile strain Tensile stress Tensile strain

(N/mm?)  atyield (MPa) at yield (%) at break (MPa) at break (%)

PANF 209.51 +£13.73 523+020 2.45x0.18 2547 £1.07 42.10£1.74
[[[MgO/PANF 253.07+21.42 6.52+0.04 2.09%+0.25 24.62 £1.95 36.09 £ 1.86

[[JPOM/PANF 228.94+19.54 4.64+0.01 2.10+0.01 18.86 £ 0.97 41.79 £ 1.54
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Figure S1: Schematic representation of the simultaneous electrospinning and electrospraying (SEE)

process.
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Figure S2: First and second differential scanning calorimetry curves of mANF. The glass transition

temperature () of mANF was detected at around 273 °C.
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Figure S3: Schematic representations of experimental systems used to investigate the resistance of the
composite nanofiber mats to permeation by gas CWA simulants according to a modified ASTM F739

standard.
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Figure S4: Fabrication of assemblies of composite nanofiber mats via adhesion with glue spraying and

hot pressing.
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total gas volume: 144,000 cc for 12 h
temperature: 25 °C
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Figure S5: Schematic representation of the permeation experiments performed according to the TOP 8-2-

501 standard.



Figure S6: Morphology of pristine meta-aramid nanofibers. Double headed arrows show the alignment

direction of the meta-aramid nanofibers. The scale bar represents 1 um.
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Figure S7: EDS mapping image of (a) MgO/mNAF and (b) POM/mANF nanofibre composites.



Figure S8: Morphology of pristine polyamide 66 nanofibers. The scale bar represents 1 pum.
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Figure S9: Flow pore characteristics of the nanofiber mats PANF and [[][MgO/PANF measured by

capillary flow porometry.
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Figure S10: Penetration behavior of CWA simulants through assemblies containing MgO: (a) 2-CEES

and (b) DMMP.
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