Supporting Information

Variability of heavy metal content in soils of typical Tibetan grasslands

Yu-Rong Liu,^{a*} Zi-Yang He,^a Zi-Ming Yang,^b Guo-Xin Sun,^{a*} and Ji-Zheng He^{a, c}

^a State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
^b Department of Chemistry, Oakland University, Rochester Hills, MI, USA 48309
^c Faculty of Veterinary and Agricultural Sciences, the University of Melbourne, Parkville 3010, Victoria, Australia

Methods

Soil cation exchange capacity (CEC) was measured by extracting exchangeable cations following the method described by. ¹ Soil pH was determined using a soil to water ratio of 1 : 2.5 with a pH-meter.. Soil organic carbon was qualified according to the $K_2Cr_2O_7$ oxidation titration method. ² Soil water content was determined by ovendrying the soil samples at 105°C for 24 h. Soil Clay content Clay content was measured by the pipette method after soil organic matter oxidation with H₂O₂ and dispersion with sonication. ³

References

- 1. K. P. Kitsopoulos, Clays and clay minerals, 1999, 47, 688-696.
- 2. A. Walkley, Soil Science, 1947, 63, 251-264.
- 3. P. R. Day, *Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling*, 1965, 545-567.

Precipitation Humidity Latitude Longitude Altitude Site ID Location pН SWC SOC Clay CEC H_2O (%) $(g kg^{-1})$ (%) (cmol kg⁻¹) (%) (°N) (°E) (mm)(m) Nyingchi-1 65 29°36' 94°36' 4.86 69.31 24.00 650 1 18.16 53.46 4194 Nyingchi-2 13.00 29°36' 94°38' 2 5.45 14.72 64.53 650 43.03 71 4510 Nvingchi-3 3 5.40 15.28 61.83 30.35 650 68 29°52' 92°32' 4187 52.75 Mila Mountains 4 4.86 42.93 10.58 62.37 32.06 808 67 29°49' 92°21' 4947 5 Yangpachen 6.32 20.48 5.97 59.56 13.58 400 62 30°10' 90°35' 4523 Damxung 5.73 11.42 58.97 21.94 49 91°18' 6 28.48 457 30°31' 4361 Nagchu-1 6.24 55.91 21.40 400 57 31°17' 91°48' 4669 7 28.97 14.53 Nagchu-2 6.31 65 31°38' 92°00' 4598 8 28.43 12.49 57.44 45.43 400 Nam Co 91°06' 9 7.44 5.98 2.98 65.42 5.17 410 49 30°48' 4769 Baingoin -1 7.74 8.70 54.35 11.55 308 32 90°20' 4646 10 2.46 31°17' Baingoin -2 4.71 7.21 6.28 2.33 1.94 308 22 31°28' 89°54' 4762 11 Baingoin -3 8.14 2.02 8.17 4.17 49 89°36' 12 4.92 308 31°36' 4596 Nyima-1 88°52' 3.11 15.36 150 13 7.67 9.76 14.17 30 31°37' 4641 14 Nyima-2 7.92 3.09 15.61 9.69 86°16' 6.82 150 28 31°54' 4767 Gerze-1 8.18 3.09 0.82 40.26 4.83 189 10 32°12' 84°29' 4474 15 Gerze2 16 8.73 5.32 1.94 32.38 5.34 189 32°17' 84°06' 4445 21 17 Cuoqin -1 7.99 5.35 1.65 51.29 3.46 100 11 32°18' 85°07' 4719 Cuoqin -2 6.83 4.75 2.81 47.28 8.80 85°06' 4726 18 100 36 30°50' 19 Cuoqin -3 34 85°24' 8.10 2.42 53.25 8.26 6.88 100 30°34' 4806 20 7.43 4.73 10 30°09' 85°22' Cuoqin -4 9.02 57.53 12.86 100 5375

Table S1 Site information and soil physic-chemical properties of 23 sites from the Tibetan Plateau (TP). SWC, soil water; SOC, soil organiccarbon; Clay, percentage of clay component of soil texture; CEC, cation exchange capacity; Precipitation, local average annual precipitation. 1, 2,3 and 4 represents replicated samples from the same area. Climate data were collected from China Meteorological Bureau.

21	Saga	8.06	13.28	3.70	69.88	9.00	220	34	29°05'	85°23'	4704
22	Tingri	7.50	14.57	5.93	58.97	21.57	319	46	28°51'	87°20'	4915
23	Shigatse	8.03	9.22	1.03	67.23	6.30	300	77	29°19'	89°10'	3834

Figure S1 Geographic location of sampling sites (n = 23) across the Tibetan Plateau (TP). The map was generated using ArcGIS 10.0 (<u>http://www.esri.com/software/arcgis/</u>). Numerical information is summarized in the Table S1.

Figure S3 Relationship between average annual precipitation and longitude (n=23). Pearson's R^2 and *P* values for the correlation are given in the Figure.

