Supporting Information

Green synthesis of Si-GQD nanocomposites as cost-effective catalysts for oxygen reduction reaction

Prathik Roy,^{a ‡} Rini Ravindranath,^{ab‡} Arun Prakash Periasamy,^a Chia-Wen Lien,^a Chi-Te Liang^c

and Huan-Tsung Chang^{ad}*

^aDepartment of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan,
 ^bNanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan,
 ^cDepartment of Physics, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
 ^dDepartment of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan.

^{*t*} These authors contributed equally.

Corresponding Author: Professor Huan-Tsung Chang, Department of Chemistry, National

Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Tel and fax: 011-886-2-33661171. E-mail: changht@ntu.edu.tw

- **1** Table of Contents:
- 2 Figure S1. (A) TEM and (B) HRTEM images of GQDs.
- 3 Figure S2. (A) TEM image, (B) XPS, (C) XRD and (D) EDX spectra of Si NSs.
- 4 Figure S3. UV-vis absorption curves for Si NSs, GQD and Si-GQD_{1.0} NCs.
- 5 Figure S4. High resolution O1s XPS spectra of (A) GQDs and (B) Si-GQD_{1.0} NCs.
- Figure S5. (A) CV curves of a Pt/C electrode in (a) N₂- and (b) O₂-saturated 0.1 M KOH at a
 scan rate of 20 mV s⁻¹. Current densities were normalized with respect to the geometric area
 (0.196 cm²) of the RDE.
- 9 Figure S6. CV plots of the Si-GQD_{1.0} NC electrode (Inset: Pt/C) in 0.1 M KOH in the absence
 10 and presence of 1 M MeOH. Scan rate: 20 mV s⁻¹.
- 11 Figure S7. LSV polarization curves of Si-GQD NCs electrodes recorded before and after 2000.
- 12 cycles of accelerated durability tests. Scan rate: 5 mV s^{-1} .
- 13 Table S1. Elemental composition of rice husk before pyrolysis at 700 °C for 2 hours
- 14 Table S2. Comparison of ORR activity of carbon nanomaterials in alkaline media
- 15
- 16
- 17
- 18
- 19

- Figure S1. (A) TEM and (B) HRTEM images of GQDs.

Figure S5. (A) CV curves of a Pt/C electrode in (a) N_2 - and (b) O_2 -saturated 0.1 M KOH at a scan rate of 20 mV s⁻¹. Current densities were normalized with respect to the geometric area (0.196 cm²) of the RDE.

57

58

59

Figure S6. CV plots of the Si-GQD_{1.0} NC electrode (Inset: Pt/C) in 0.1 M KOH in the absence
and presence of 1 M MeOH. Scan rate: 20 mV s⁻¹.

84	Elements	Before
85		Pyrolysis
86		(wt%)
87	Si	81.2
88	С	12.2
89	Al	2.3
90	Fe	1.8
91	Na	0.7
92	Ca	0.4
93		
94	К	0.5
95	Mg	0.3
96	Р	0.6
97		

83 Table S1. Elemental composition of rice husk before pyrolysis at 700 °C for 2 h

98

Carbon nanomaterials	^a E _{onset}	^b Peak	Stability	Ref.
	(V)	potential		
		(V)		
N-GQD/graphene	-0.16	-0.27	48 h	1
RN-GQDs-35/graphene	-0.19	-0.31	1000 cycles	2
N-doped colloidal GQDs	-0.1	^c -0.3	^d NA	3
N-doped carbon nanodots	-0.15	-0.35	1.9 h	4
N-doped mesoporous	-0.13	-0.25	5.6 h	5
graphitic arrays				
g-C ₃ N ₄ @CMK	-0.25	-0.3	45 h	6
Si-GQD _{1.0} NCs	-0.18	-0.33	8.3 h, 2000 cycles	This work

100 Table S2. Comparison of ORR activity of carbon nanomaterials in alkaline media

101 ^{a,b} E vs. Ag/AgCl electrode, ^c E vs. SCE, ^dNA- not available

102

103 REFERENCES

104	1	Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, J. Am. Chem. Soc., 2012, 134,
105		15-18.
106	2	Y. Liu, P. Wu, ACS Appl. Mater. Interfaces, 2013, 5, 3362-3369.
107	3	Q, Li, S. Zhang, L. Dai, Ls. Li, J. Am. Chem. Soc., 2012, 134, 18932-18935.

- 108 4 C. Zhu, J. Zhai, S. Dong, *Chem. Commun.*, 2012, 48, 9367-9369.
- 109 5 R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem., Int. Ed. 2010, 122, 2619-2623.
- 110 6 Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S.C. Smith, M.
- 111 Jaroniec, G-Q. Lu, S.-Z. Qiao, J. Am. Chem. Soc., 2011, **133**, 20116-20119.