Supplementary Information

Hyalodendriellins A-F, new 14-membered resorcylic acid lactones from the endophytic fungus *Hyalodendriella* sp. Ponipodef12

Daowan Lai, ‡^a Ziling Mao, ‡^a Dan Xu, ^a Xuping Zhang, ^a Ali Wang, ^a Rushan Xie, ^a Ligang Zhou*^a and Yang Liu^b

^aKey Laboratory of Plant Pathology, Ministry of Agriculture/Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China. E-mail: lgzhou@cau.edu.cn; Fax: +86 10 62731062; Tel: +86 10 62731199

^bInstitute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture, Beijing 100193, China

[‡] These authors contributed equally.

Contents

1.	CD spectra of 1-6, 1a-1b, and 3a4					
	Figure S1. The CD spectra of 1, 1a, 1b, 2, and 4 (in MeOH)					
	Figure S2. The CD spectra of 3, 3a, 5, and 6 (in MeOH).					
2.	Computation Data for 1a, 2, 3b, and 4	5				
	Figure S3. The stable conformers of (3 <i>S</i> , 7 <i>S</i> , 8 <i>S</i> , 9 <i>S</i>)-1a with populations greater than 1%	5				
	Figure S4. The stable conformers of (3 <i>S</i> , 5 <i>R</i> , 7 <i>S</i> , 8 <i>R</i> , 9 <i>S</i>)-2 with populations greater than	2%.				
	Figure S5 . The stable conformers of (3 <i>R</i> , 7 <i>R</i> , 8 <i>R</i> , 9 <i>S</i>)- 3b with populations greater than 1%	6 67				
	Figure S6. The stable conformers of (3S, 7R, 8R, 9S)-4 with populations greater than 1%.	8				
3.	(1D, 2D) NMR, IR, and HRESIMS spectra	9				
	Figure S7. ¹ H NMR spectrum of 1 (CDCl ₃ , 400MHz)	9				
	Figure S8 . ¹³ C NMR spectrum of 1 (CDCl ₃ , 100MHz)	9				
	Figure S9. DEPT-135 spectrum of 1 (CDCl ₃ , 100MHz)	10				
	Figure S10. HMQC spectrum of 1 (CDCl ₃)	10				
	Figure S11. HMBC spectrum of 1 (CDCl ₃)	11				
	Figure S12 . ¹ H NMR spectrum of 1 (DMSO- <i>d</i> ₆ , 400MHz)	11				
	Figure S13 . ¹³ C NMR spectrum of 1 (DMSO- <i>d</i> ₆ , 100MHz)	12				
	Figure S14. HMQC spectrum of 1 (DMSO- <i>d</i> ₆)	12				
	Figure S15. HMBC spectrum of 1 (DMSO- <i>d</i> ₆)	13				
	Figure S16. IR spectrum of 1	13				
	Figure S17. HRESIMS spectrum of 1	14				
	Figure S18. ¹ H NMR spectrum of 1a (CDCl ₃ , 400MHz)	14				
	Figure S19. ¹ H- ¹ H COSY spectrum of 1a (CDCl ₃)	15				
	Figure S20. NOESY spectrum of 1a (CDCl ₃)	15				
	Figure S21. HRESIMS spectrum of 1a	16				
	Figure S22. ¹ H NMR spectrum of 1b (CD ₃ OD, 400MHz)	16				
	Figure S23. HRESIMS spectrum of 1b	17				
	Figure S24. ¹ H NMR spectrum of 1c (CDCl ₃ , 400MHz)	17				
	Figure S25. HRESIMS spectrum of 1c	18				
	Figure S26 . ¹ H NMR spectrum of 2 (DMSO- <i>d</i> ₆ , 400MHz)	18				
	Figure S27 . ¹³ C NMR spectrum of 2 (DMSO- <i>d</i> ₆ , 100MHz)	19				
	Figure S28. HMQC spectrum of 2 (DMSO- <i>d</i> ₆)	19				
	Figure S29. HMBC spectrum of 2 (DMSO- <i>d</i> ₆)	20				
	Figure S30 . NOESY spectrum of 2 (DMSO- <i>d</i> ₆)	20				
	Figure S31. IR spectrum of 2	21				
	Figure S32. HRESIMS spectrum of 2	21				
	Figure S33 . ¹ H NMR spectrum of 3 (DMSO- <i>d</i> ₆ , 400MHz)	22				
	Figure S34 . ¹³ C NMR spectrum of 3 (DMSO- <i>d</i> ₆ , 100MHz)	22				
	Figure S35. HMQC spectrum of 3 (DMSO- <i>d</i> ₆)	23				
	Figure S36. HMBC spectrum of 3 (DMSO- <i>d</i> ₆)	23				
	Figure S37. ¹ H NMR spectrum of 3 (CD ₃ OD, 400MHz)	24				
	Figure S38 . ¹³ C NMR spectrum of 3 (CD ₃ OD, 100MHz)	24				
	Figure S39. HMQC spectrum of 3 (CD ₃ OD)	25				

Figure S40. HMBC spectrum of 3 (CD ₃ OD)	25
Figure S41. IR spectrum of 3	26
Figure S42. HRESIMS spectrum of 3	26
Figure S43. ¹ H NMR spectrum of 3a (CDCl ₃ , 400MHz)	27
Figure S44. ¹³ C NMR spectrum of 3a (CDCl ₃ , 100MHz)	27
Figure S45. HMQC spectrum of 3a (CDCl ₃)	28
Figure S46. HMBC spectrum of 3a (CDCl ₃)	28
Figure S47. 1D NOE spectrum of 3a (CDCl ₃ , 600MHz)	29
Figure S48. HRESIMS spectrum of 3a	29
Figure S49. ¹ H NMR spectrum of 3b (CD ₃ OD, 400MHz)	
Figure S50. HRESIMS spectrum of 3b	
Figure S51. ¹ H NMR spectrum of 4 (CD ₃ OD, 400MHz)	31
Figure S52. IR spectrum of 4	31
Figure S53. HRESIMS spectrum of 4	32
Figure S54. ¹ H NMR spectrum of 5 (DMSO- <i>d</i> ₆ , 600MHz)	32
Figure S55 . ¹³ C NMR spectrum of 5 (DMSO- <i>d</i> ₆ , 150MHz)	
Figure S56 . ¹ H- ¹ H COSY spectrum of 5 (DMSO- d_6)	33
Figure S57. HSQC spectrum of 5 (DMSO- <i>d</i> ₆)	34
Figure S58. HMBC spectrum of 5 (DMSO- <i>d</i> ₆)	
Figure S59. NOESY spectrum of 5 (DMSO- <i>d</i> ₆)	35
Figure S60. IR spectrum of 5	35
Figure S61. HRESIMS spectrum of 5	
Figure S62. ¹ H NMR spectrum of 6 (DMSO- <i>d</i> ₆ , 600MHz)	
Figure S63 . ¹³ C NMR spectrum of 6 (DMSO- <i>d</i> ₆ , 150MHz)	37
Figure S64 . ¹ H- ¹ H COSY spectrum of 6 (DMSO- d_6)	37
Figure S65. HSQC spectrum of 6 (DMSO- <i>d</i> ₆)	
Figure S66. HMBC spectrum of 6 (DMSO- <i>d</i> ₆)	
Figure S67. NOESY spectrum of 6 (DMSO- <i>d</i> ₆)	
Figure S68. IR spectrum of 6	
Figure S69. HRESIMS spectrum of 6	40

1. CD spectra of 1-6, 1a-1b, and 3a

Figure S1. The CD spectra of 1, 1a, 1b, 2, and 4 (in MeOH).

Figure S2. The CD spectra of 3, 3a, 5, and 6 (in MeOH).

2. Computation Data for 1a, 2, 3b, and 4

1a-1 (47.0%)

1a-3 (11.7%)

1a-2 (24.0%)

1a-4 (11.2%)

1a-5 (1.8%)

Figure S3. The stable conformers of (3*S*, 7*S*, 8*S*, 9*S*)-**1a** with populations greater than 1%.

Figure S4. The stable conformers of (3S, 5R, 7S, 8R, 9S)-2 with populations greater than 2%.

3b-1 (50.2%)

3b-3 (9.3%)

3b-2 (23.6%)

3b-4 (8.7%)

3b-5 (6.1%)

Figure S5. The stable conformers of (3R, 7R, 8R, 9S)-**3b** with populations greater than 1%.

4-1 (27.2%)

4-2 (23.5%)

4-3 (20.1%)

4-4 (19.9 %)

4-5 (3.3%)

4-6 (2.0%)

Figure S6. The stable conformers of (3*S*, 7*R*, 8*R*, 9*S*)-**4** with populations greater than 1%.

Figure S12. ¹H NMR spectrum of 1 (DMSO-*d*₆, 400MHz)

Figure S14. HMQC spectrum of 1 (DMSO-*d*₆)

Figure S15. HMBC spectrum of 1 (DMSO-*d*₆)

Figure S16. IR spectrum of 1

Figure S17. HRESIMS spectrum of 1

Figure S18. ¹H NMR spectrum of 1a (CDCl₃, 400MHz)

Figure S19. ¹H-¹H COSY spectrum of 1a (CDCl₃)

Figure S20. NOESY spectrum of 1a (CDCl₃)

Figure S21. HRESIMS spectrum of 1a

Figure S22. ¹H NMR spectrum of 1b (CD₃OD, 400MHz)

Figure S23. HRESIMS spectrum of 1b

Figure S24. ¹H NMR spectrum of 1c (CDCl₃, 400MHz)

Figure S25. HRESIMS spectrum of 1c

Figure S26. ¹H NMR spectrum of 2 (DMSO-*d*₆, 400MHz)

Figure S28. HMQC spectrum of 2 (DMSO-*d*₆)

Figure S29. HMBC spectrum of 2 (DMSO-*d*₆)

20

Figure S31. IR spectrum of 2

Figure S32. HRESIMS spectrum of 2

Figure S34. ¹³C NMR spectrum of 3 (DMSO- d_6 , 100MHz)

Figure S35. HMQC spectrum of 3 (DMSO-*d*₆)

Figure S38. ¹³C NMR spectrum of 3 (CD₃OD, 100MHz)

Figure S39. HMQC spectrum of 3 (CD₃OD)

Figure S40. HMBC spectrum of 3 (CD₃OD)

Figure S41. IR spectrum of 3

Figure S42. HRESIMS spectrum of 3

Figure S43. ¹H NMR spectrum of 3a (CDCl₃, 400MHz)

Figure S45. HMQC spectrum of 3a (CDCl₃)

Figure S47. 1D NOE spectrum of 3a (CDCl₃, 600MHz)

Figure S48. HRESIMS spectrum of 3a

Figure S49. ¹H NMR spectrum of 3b (CD₃OD, 400MHz)

Figure S50. HRESIMS spectrum of 3b

Figure S51. ¹H NMR spectrum of 4 (CD₃OD, 400MHz)

Figure S52. IR spectrum of 4

MS Spectrum Peak List

<i>m/z</i> ,	Calc m/z	Diff(ppm)	Z	Abund	Formula	Ion
395.1725	395.1711	3.43	- 1	129127. 5	C20H27O8	(M-H) -

Figure S53. HRESIMS spectrum of 4

Figure S54. ¹H NMR spectrum of 5 (DMSO-*d*₆, 600MHz)

Figure S56. ¹H-¹H COSY spectrum of **5** (DMSO- d_6)

Figure S57. HSQC spectrum of 5 (DMSO-*d*₆)

Figure S59. NOESY spectrum of 5 (DMSO-*d*₆)

Figure S60. IR spectrum of 5

Figure S61. HRESIMS spectrum of 5

Figure S62. ¹H NMR spectrum of 6 (DMSO-*d*₆, 600MHz)

Figure S66. HMBC spectrum of 6 (DMSO-*d*₆)

Figure S67. NOESY spectrum of 6 (DMSO-*d*₆)

Figure S68. IR spectrum of 6

Figure S69. HRESIMS spectrum of 6