Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Modular Synthesis of Allyl Vinyl Ethers for the Enantioselective Construction of Functionalized Quaternary Stereocenters

Gopinathan Muthusamy and Sunil V. Pansare*

Department of Chemistry Memorial University St. John's, NL, Canada A1B 3X7

Experimental procedures	2-16
¹ H and ¹³ C spectra	
HPLC traces	

General procedure for the synthesis of allyl tert-butyl oxalates 7-10:

To a solution of the 3-halo-2-butenol in dichloromethane was added triethyl amine. The mixture was stirred for 5 min at ambient temperature and then cooled to 0 °C. A solution of *tert*-butyl 2-chloro-2-oxoacetate in dichloromethane was added over 5 min and the mixture was stirred at 0 °C for the specified time. Water was added and the mixture was extracted with dichloromethane. The combined extracts were washed with aqueous HCl (0.1 M), saturated aqueous sodium bicarbonate, brine, dried over Na₂SO₄ and concentrated under reduced pressure to provide the corresponding allyl *tert*-butyl oxalates. These were used in the next step without purification.

(E)-3-Bromobut-2-enyl tert-butyl oxalate (7):

The reaction of (*E*)-3-bromo-2-butenol (**3**)¹ (310 mg, 2.06 mmol), triethylamine (0.35 mL, 2.48 mmol) and *tert*-butyl 2-chloro-2-oxoacetate (405 mg, 2.48 mmol) in dichloromethane (5 mL) for 3 h, according to the general procedure, provided 478 mg (83%) of 7; R_f = 0.20 (hexanes/EtOAc, 96:4).

IR (neat): 2983, 2920, 1760, 1736, 1371, 1327, 1260, 1194, 1138, 943, 841 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.09 (tq, 1H, *J* = 7.8, 1.4, CH₃C=C*H*), 4.68 (br d, 2H, *J* = 7.8, OC*H*₂), 2.36 (m, 3H, CH₃C=CH), 1.56 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 158.2 (*C*O₂(CH₃)₃ or *C*O₂CH₂), 156.6 (*C*O₂CH₂ or *C*O₂(CH₃)₃), 128.5 (Br*C*=CH), 124.6 (Br*C*=*C*H), 85.2 (*C*(CH₃)₃, 62.5 (OCH₂), 27.7 (C(CH₃)₃), 23.9 (CH₃C=CH); HRMS (ESI, pos.): *m*/*z* 278.0156 (278.0154 calc. for C₁₀H₁₅BrO₄ (M⁺)).

(Z)-3-Bromobut-2-enyl tert-Butyl oxalate (8):

The reaction of (*Z*)-3-bromo-2-butenol (4)² (2.60 g, 17.33 mmol), triethylamine (2.89 mL, 20.79 mmol) and *tert*-butyl 2-chloro-2-oxoacetate (3.41 g, 20.8 mmol) in dichloromethane (25 mL) for 2 h, according to the general procedure, provided 4.31 g (89%) of **8**; $R_f = 0.24$ (hexanes/EtOAc, 95:5).

IR (neat): 2982, 1762, 1736, 1371, 1320, 1194, 1135, 950, 843 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.92 (tq, 1H, *J* = 6.3, 1.3, CH₃C=C*H*), 4.84 (dq, 2H, *J* = 6.3, 1.3, OC*H*₂), 2.35 (apparent q, 3H, *J* = 1.3, CH₃C=CH), 1.56 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 158.3 (*C*O₂(CH₃)₃ or *C*O₂CH₂), 156.7 (*C*O₂CH₂ or *C*O₂(CH₃)₃), 127.8 (Br*C*=CH), 122.3 (Br*C*=*C*H), 85.0 (*C*(CH₃)₃, 66.0 (OCH₂), 29.0 (*C*H₃C=CH), 27.7 (C(*C*H₃)₃); HRMS (APPI, pos.): *m*/*z* 278.0155 (278.0154 calc. for C₁₀H₁₅BrO₄ (M⁺)).

(E)-3-Iodobut-2-enyl tert-Butyl oxalate (9):

The reaction of (*E*)-3-iodo-2-butenol (**5**)³ (1.75 g, 8.85 mmol), triethylamine (1.48 mL, 10.6 mmol) and *tert*-butyl 2-chloro-2-oxoacetate (1.74 g, 10.6 mmol) in dichloromethane (10 mL) for 1 h, according to the general procedure, provided 2.10 g (75%) of **9**; R_f = 0.21 (hexanes/EtOAc, 95:5).

IR (neat): 2983, 1761, 1737, 1371, 1329, 1310, 1263, 1193, 1139, 945, 842 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.38 (tq, 1H, J = 7.4, 1.5, CH₃C=CH), 4.64 (br d, J = 7.4, OCH₂), 2.52 (m, 3H, CH₃C=CH), 1.56 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 158.1 (CO₂(CH₃)₃ or CO₂CH₂), 156.5 (CO₂CH₂ or CO₂(CH₃)₃), 133.1 (IC=CH), 102.9 (IC=CH), 85.2 (C(CH₃)₃, 62.5 (OCH₂), 28.3 (CH₃C=CH), 27.8 (C(CH₃)₃; HRMS (ESI, pos.): m/z 326.0015 (326.0015 calc. for C₁₀H₁₅IO₄ (M⁺)).

(Z)-3-Iodobut-2-enyl tert-Butyl oxalate (10):

The reaction of (*Z*)-3-iodo-2-butenol (6)⁴ (1.58 g, 7.98 mmol), triethylamine (1.34 mL, 9.57 mmol) and *tert*-butyl 2-chloro-2-oxoacetate (1.57 g, 9.57 mmol) in dichloromethane (10 mL) for 1 h, according to the general procedure, provided 2.01 g (77%) of **10**; $R_f = 0.28$ (hexanes/EtOAc, 95:5).

IR (neat): 2981, 1763, 1735, 1658, 1394, 1370, 1258, 1193, 1139, 1082, 950, 843 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.81 (tq, 1H, J = 6.1, 1.4, CH₃C=CH), 4.77 (dq, 2H, J = 6.1, 1.4, OCH₂), 2.57 (apparent q, 3H, J = 1.4, CH₃C=CH), 1.56 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 158.3 (CO₂(CH₃)₃ or CO₂CH₂), 156.7 (CO₂CH₂ or CO₂(CH₃)₃), 128.5 (C=CH-CH₂), 105.6 (C=CH-CH₂), 85.1 (C(CH₃)₃, 70.7 (OCH₂), 33.9 (CH₃C=CH), 27.7 (CH₃)₃; HRMS (ESI, pos.): m/z 326.0006 (326.0015 calc. for C₁₀H₁₅IO₄ (M⁺)).

General procedure for the synthesis of allyl vinyl ethers:

A CEM Discover[®] microwave reactor was used for the microwave experiments. All reactions involving microwave heating were conducted in sealed reaction vessels. The temperature of the reaction mixture was monitored with an infrared sensor and the mixture was at the preset temperature (100 °C) in approximately 60s.

To a solution of the allyl *tert*-butyl oxalate in toluene in a 35 mL microwave vial was added a solution of the Petasis reagent (2.2 equiv.) in toluene.⁵ The vial was sealed and the mixture was heated with stirring at 100 °C until completion of the reaction. The mixture was then cooled to ambient temperature, hexane (10 mL) was added, and the mixture was stirred for 5 min. The precipitated solids were removed by filtration through a pad of Celite[®] and the filtrate was concentrated under reduced pressure (for the iodo compounds, this residue was briefly treated with aqueous HCl as described). The residue was purified by flash chromatography on silica gel (hexane:EtOAc, 99:1) to provide the allyl vinyl ethers.

tert-Butyl (*E*)-2-((3-bromobut-2-enyl)oxy)acrylate (11):

The reaction of 7 (478 mg, 1.71 mmol) and the Petasis reagent (5.60 mL of 0.67 M solution in toluene, 3.76 mmol) for 15 min according to the general procedure, provided after purification by flash column chromatography 190 mg (40%) of **11** as a yellow oil; $R_f = 0.26$ (hexanes/EtOAc, 96:4).

IR (neat): 2979, 2932, 1729, 1370, 1209, 1153, 1125, 845 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.12 (tq, 1H, *J* = 6.8, 1.3, CH₃C=C*H*), 5.29 (d, 1H, *J* = 2.6, C=C*H*H), 4.53 (d, 1H, *J* = 2.6, C=CH*H*), 4.26 (br d, 2H, *J* = 6.8, OC*H*₂), 2.32-2.29 (m, 3H, CH₃C=CH), 1.52 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.0 (*C*=O), 151.7 (*C*=CH₂), 126.5 (C=*C*H-CH₂), 125.2 (*C*=CH-CH₂), 94.0 (C=*C*H₂), 82.0 *C*(CH₃)₃), 65.0 (OCH₂), 28.0 (C(CH₃)₃), 24.0 (CH₃C=C); HRMS (ESI, pos.): *m/z* 276.0362 (276.0361 calc. for C₁₁H₁₇BrO₃ (M⁺)).

tert-Butyl (Z)-2-((3-bromobut-2-enyl)oxy)acrylate (12):

The reaction of **8** (900 mg, 3.22 mmol) and the Petasis reagent (10.6 mL of 0.67 M solution in toluene, 7.08 mmol) for 15 min according to the general procedure, provided after purification by flash column chromatography 540 mg (61%) of **12** as a yellow oil; $R_f = 0.27$ (hexanes/EtOAc, 95:5).

IR (neat): 2978, 2930, 1727, 1620, 1392, 1368, 1207, 1152, 1036, 849 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.97-5.90 (m, 1H, CH₃C=C*H*), 5.28 (d, 1H, *J* = 2.6, C=C*H*H), 4.58 (d, 1H, *J* = 2.6, C=CH*H*), 4.45-4.39 (m, 2H, OC*H*₂), 2.33 (apparent q, 3H, *J* = 1.3, C*H*₃C=CH), 1.52 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.1 (*C*=O), 151.5 (*C*=CH₂), 124.9 (*C*=CH-CH₂), 124.5 (C=CH-CH₂), 93.9 (C=CH₂), 82.0 (*C*(CH₃)₃, 68.2 (OCH₂), 28.8 (*C*H₃C=C), 28.0 (*C*(*C*H₃)₃; HRMS (ESI, pos.): *m/z* 276.0356 (276.0361 calc. for C₁₁H₁₇BrO₃ (M⁺)).

tert-Butyl (*E*)-2-((3-iodobut-2-en-1-yl)oxy)acrylate (13):

The reaction of 9 (100 mg, 0.30 mmol) and the Petasis reagent (1 mL of 0.67 M solution in toluene, 0.67 mmol) for 5 min according to the general procedure provided the crude product. This was

dissolved in dichloromethane (5 mL), the solution was washed with aqueous HCl (0.2 M, 2 x 3 mL) and the organic phase was concentrated. The residue was purified by flash column chromatography to provide 54 mg (56%) of **13** a yellow oil; $R_f = 0.21$ (hexanes/EtOAc, 96:4).

IR (neat): 2979, 2931, 1727, 1619, 1369, 1328, 1284, 1254, 1149, 1069, 1023, 996, 842 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.41 (tq, 1H, J = 6.5, 1.5, CH₃C=CH), 5.28 (d, 1H, J = 2.6, C=CHH), 4.53 (d, 1H, J = 2.6, C=CHH), 4.24 (br d, 2H, J = 6.5, OCH₂), 2.47 (m, 3H, CH₃C=CH), 1.50 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 161.9 (C=O), 151.5 (C=CH₂), 135.2 (C=CH-CH₂), 99.1 (C=CH-CH₂), 93.8 (C=CH₂), 82.0 C(CH₃)₃), 65.2 (OCH₂), 28.3 (CH₃C=C), 28.0 (C(CH₃)₃); HRMS (APPI, pos.): m/z 324.0236 (324.0222 calc. for C₁₁H₁₇IO₃ (M⁺)).

tert-Butyl (Z)-2-((3-iodobut-2-en-1-yl)oxy)acrylate (14):

The reaction of **10** (270 mg, 0.83 mmol) and the Petasis reagent (2.8 mL of 0.67 M solution in toluene, 1.87 mmol) for 5 min according to the general procedure provided the crude product. This was dissolved in dichloromethane (10 mL) and the solution was washed with aqueous HCl (0.2 M, 2 x 10 mL) and the organic phase was concentrated. The residue was purified by flash column chromatography to provide 153 mg (57%) of **14** a yellow oil; $R_f = 0.24$ (hexanes/EtOAc, 96:4).

IR (neat): 2978, 2934, 1724, 1618, 1392, 1368, 1254, 1206, 1148, 1085, 1031, 847 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.89-5.82 (m, 1H, CH₃C=C*H*), 5.28 (d, 1H, *J* = 2.6, C=C*H*H), 4.57 (d, 1H, *J* = 2.6, C=CHH), 4.36-4.30 (m, 2H, OCH₂), 2.54 (apparent q, 3H, *J* = 1.5, CH₃C=CH), 1.52 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.0 (*C*=O), 151.5 (*C*=CH₂), 130.7 (C=CH-CH₂), 102.3 (*C*=CH-CH₂), 94.1 (C=*C*H₂), 82.0 *C*(CH₃)₃), 73.0 (OCH₂), 33.6 (CH₃C=C), 28.0 (C(CH₃)₃); HRMS (APPI, pos.): *m/z* 324.0231 (324.0222 calc. for C₁₁H₁₇IO₃ (M⁺)).

General Procedure 1 for Suzuki-Miyaura cross-coupling of 13 and 14 with arylboronic acids:

To the iodoallyl vinyl ether were added the arylboronic acid, KOH, Ag₂O and dioxane (purged with N₂ for 15 min) at room temperature followed by PdCl₂(dppf)·CH₂Cl₂. The mixture was heated with stirring at 80 °C until consumption of the iodo allyl vinyl ether (TLC). After cooling to ambient temperature, diethyl ether was added and the resulting solution was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel.

General Procedure 2 for Suzuki-Miyaura cross-coupling of 13 and 14 with alkylboronic acids:

To the iodoallyl vinyl ether were added the alkylboronic acid, K₂CO₃, Ag₂O and THF (purged with N₂ for 15 min) at room temperature followed by freshly prepared Pd(PPh₃)₄. The mixture was heated to reflux until consumption of the iodo allyl vinyl ether (TLC). After cooling

to ambient temperature, H_2O (1 mL) was added and the mixture was extracted with diethyl ether (3 x 2 mL) and the combined extracts were washed with saturated NaHCO₃, brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel.

tert-Butyl (E)-2-(3-methylhept-2-enyloxy)acrylate (15a):

The reaction of **13** (82 mg, 0.25 mmol), butylboronic acid (28 mg, 0.27 mmol), Pd(PPh₃)₄ (29 mg, 0.025 mmol), Ag₂O (145 mg, 0.62 mmol) and K₂CO₃ (103 mg, 0.74 mmol) in THF (1 mL) for 1 h according to General Procedure 2 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 39 mg (63%) of **15a** as a clear oil; $R_f = 0.23$ (hexanes/EtOAc, 97:3).

IR (neat): 2932, 1726, 1617, 1263, 1153, 909 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.42 (tq, 1H, *J* = 6.4, 1.3, CH₃C=C*H*), 5.23 (d, 1H, *J* = 2.3, C=CH*H*), 4.53 (d, 1H, *J* = 2.3, C=C*H*H), 4.31 (br d, 2H, *J* = 6.6, OC*H*₂), 2.06-1.98 (m, 2H, C=CC*H*₂), 1.67 (s, 3H, C*H*₃C=C), 1.51 (s, 9H, C(C*H*₃)₃), 1.46-1.24 (m, 4H, C*H*₂C*H*₂), 0.90 (t, 3H, *J* = 7.2, CH₂C*H*₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.3 (C=O), 152.1 (*C*=CH₂), 141.0 (CH₃C=CH), 118.8 (CH₃C=CH), 93.1 (C=CH₂), 81.6 (C(CH₃)₃, 65.5 (OCH₂), 39.2 (C=CCH₂CH₂), 29.8 (CH₃CH₂CH₂ or CH₃CH₂CH₂), 28.0 (C(CH₃)₃, 22.4 (CH₃CH₂CH₂ or CH₃CH₂CH₂), 16.6 (*C*H₃C=CH or *C*H₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂), 16.6 (*C*H₃C=CH or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂), 16.6 (*C*H₃C=CH or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂), 16.6 (*C*H₃C=CH or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂ or CH₃CH₂CH₂), 14.0 (*C*H₃CH₂CH₂) or CH₃C=CH); HRMS (APPI, neg.): *m*/*z* 254.1875 (254.1882 calc. for C₁₅H₂₆O₃ (M⁺)).

tert-Butyl (*E*)-2-(3,5-dimethylhex-2-enyloxy)acrylate (15b):

The reaction of **13** (80 mg, 0.25 mmol), (2-methylpropyl)boronic acid (28 mg, 0.27 mmol), Pd(PPh₃)₄ (28 mg, 0.025 mmol), Ag₂O (142 mg, 0.61 mmol) and K₂CO₃ (102 mg, 0.74 mmol) in THF (1 mL) for 2h according to General Procedure 2 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 37mg (61%) of **15b** as a clear oil; $R_f = 0.24$ (hexanes/EtOAc, 97:3).

IR (neat): 2957, 2928, 2871, 1726, 1617, 1369, 1316, 1206, 1150, 1026, 847 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.40 (br t, 1H, J = 6.4, CH₃C=CH), 5.23 (d, 1H, J = 2.3, C=CHH), 4.53 (d, 1H, J = 2.3, C=CHH), 4.33 (br d, 2H, J = 6.4, OCH₂), 1.89 (br d, 2H, J = 7.4, CH₂CH(CH₃)₂), 1.81-1.71 (m, 1H, CH(CH₃)₂, 1.66-1.62 (br s, 3H, CH₃C=C), 1.51 (s, 9H, C(CH₃)₃), 0.85 (d, 6H, J = 6.5, CH(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃): δ 162.3 (C=O), 152.1 (C=CH₂), 139.8 (*i*-BuC=CH), 120.3 (CH₃C=CH), 93.1 (C=CH₂), 81.6 (C(CH₃)₃, 65.5 (OCH₂), 49.2 (CH₂CH(CH₃)₂, 28.0 (C(CH₃)₃, 26.0 (CH(CH₃)₂, 22.4 (CH(CH₃)₂, 16.5 (CH₃C=C); HRMS (APPI, pos.): *m*/*z* 254.1875 (254.1882 calc. for C₁₅H₂₆O₃ (M⁺)).

tert-Butyl (*E*)-2-(3-cyclopropylbut-2-enyloxy)acrylate (15c):

The reaction of **13** (80 mg, 0.25 mmol), cyclopropylboronic acid (23 mg, 0.27 mmol), Pd(PPh₃)₄ (28 mg, 0.024 mmol), Ag₂O (142 mg, 0.61 mmol) and K₂CO₃ (102 mg, 0.74 mmol) in THF (1 mL) for 1 h according to General Procedure 2 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 37 mg (65%) of **15c** as a clear oil; $R_f = 0.23$ (hexanes/EtOAc, 97:3).

IR (neat): 2978, 2932, 1725, 1616, 1368, 1319, 1206, 1148, 1019 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.51-5.43 (br t, 1H, *J* = 6.8, CH₃C=C*H*), 5.23 (d, 1H, *J* = 2.3, C=CH*H*), 4.53 (d, 1H, *J* = 2.3, C=C*H*H), 4.31 (d, 2H, *J* = 6.5, OC*H*₂), 1.57 (s, 3H, C*H*₃C=C), 1.51 (s, 9H, C(C*H*₃)₃), 1.45-1.36 (m, 1H, C*H*CH₂CH₂), 0.64-0.54 (m, 2H, C*H*₂CH₂), 0.53-0.44 (m, 2H, CH₂C*H*₂); ¹³C NMR (75 MHz, CDCl₃): δ 162.3 (*C*=O), 152.0 (*C*=CH₂), 141.5 (CH₃*C*=CH), 117.3 (CH₃C=*C*H), 93.1 (C=CH₂), 81.7 (*C*(CH₃)₃, 65.4 (OCH₂), 28.0 (C(CH₃)₃, 18.7 (CHCH₂CH₂) or CH₃), 14.4 (*C*H₃ or CHCH₂CH₂), 4.74 (*C*H₂CH₂); HRMS (APPI, neg.): *m*/*z* 238.1569 (238.1569 calc. for C₁₄H₂₂O₃ (M⁺)).

tert-Butyl (*E*)-2-(3-(naphthalen-2-yl)but-2-enyloxy)acrylate (15d):

The reaction of **13** (110 mg, 0.34 mmol), 2-naphthylboronic acid (58 mg, 0.34 mmol), PdCl₂(dppf)·CH₂Cl₂ (4.10 mg, 0.005 mmol), Ag₂O (79 mg, 0.34 mmol) and KOH (19 mg, 0.34 mmol) in dioxane (1.2 mL) for 40 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 75 mg (68%) of **15d** as a clear oil; R_f = 0.22 (hexanes/EtOAc, 95:5).

IR (neat): 2978, 2932, 1724, 1616, 1368, 1349, 1327, 1206, 1148, 1022, 850, 812 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.86-7.77 (m, 4H, Ar*H*), 7.6 (dd, 1H, *J* = 8.6, 1.9, Ar*H*), 7.50-7.40 (m, 2H, Ar*H*), 6.17 (tq, 1H, *J* = 6.1, 1.3, CC=C*H*), 5.31 (d, 1H, *J* = 2.4, C=CH*H*), 4.64 (d, 1H, *J* = 2.4, C=C*H*H), 4.59 (d, 2H, *J* = 6.1, OC*H*₂), 2.20 (m, 3H, CH₃C=C), 1.54 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.3 (*C*=O), 152.0 (*C*=CH₂), 139.7 (Ar*C*_{ipso}), 138.4 (Ar*C*=C), 133.4 (Ar*C*_{ipso}), 132.8 (Ar*C*_{ipso}), 128.2 (Ar*C*), 127.8 (Ar*C*), 127.5 (Ar*C*), 126.2 (Ar*C*), 125.9 (Ar*C*), 124.5 (Ar*C*), 124.2 (Ar*C*), 122.9 (ArC=CH), 93.6 (C=CH₂), 81.9 (*C*(CH₃)₃), 66.1 (OCH₂), 28.0 (CH₃)₃, 16.3 (CH₃); HRMS (APPI, pos.): *m/z* 324.1722 (324.1725 calc. for C₂₁H₂₄O₃ (M⁺)).

tert-Butyl (*E*)-2-(3-phenylbut-2-enyloxy)acrylate (15e):

The reaction of **13** (100 mg, 0.31 mmol), phenylboronic acid (38 mg, 0.31 mmol), PdCl₂(dppf)·CH₂Cl₂ (3.70 mg, 0.004 mmol), Ag₂O (72 mg, 0.31 mmol) and KOH (56 mg, 0.31 mmol) in dioxane (1.1 mL) for 20 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 73 mg (87%) of **15e** as a clear oil; $R_f = 0.21$ (hexanes/EtOAc, 97:3).

IR (neat): 2979, 2931, 1726, 1618, 1369, 1337, 1317, 1207, 1150, 1032, 848 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.44-7.38 (m, 2H, Ar*H*), 7.36-7.26 (m, 3H, Ar*H*), 6.00 (tq, 1H, *J* = 6.2, 1.3, CC=C*H*), 5.29 (d, 1H, *J* = 2.4, C=CH*H*), 4.60 (d, 1H, *J* = 2.4, C=C*H*H), 4.53 (d, 2H, *J* = 6.2, OC*H*₂), 2.11-2.07 (m, 3H, C*H*₃C=C), 1.52 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (*C*=O), 152.0 (*C*=CH₂), 142.5 (Ar*C*_{ipso}), 138.6 (Ph*C*=CH), 128.3 (2 x Ar*C*), 127.4 (Ar*C*), 125.8 (2 x Ar*C*), 122.3 (PhC=*C*H), 93.5 (C=*C*H₂), 81.8 (*C*(CH₃)₃, 66.0 (OCH₂), 28.0 (C(CH₃)₃, 16.4 (*C*H₃C=CH); HRMS (APPI, pos.): *m*/*z* 274.1581 (274.1569 calc. for C₁₇H₂₂O₃ (M⁺)).

tert-Butyl (*E*)-2-((3-(4-methoxyphenyl)but-2-en-1-yl)oxy)acrylate (15f):

The reaction of **13** (85 mg, 0.26 mmol), 4-methoxyphenylboronic acid (39 mg, 0.26 mmol), PdCl₂(dppf)·CH₂Cl₂ (3.30 mg, 0.004 mmol), Ag₂O (60 mg, 0.26 mmol) and KOH (14 mg, 0.26 mmol) in dioxane (1 mL) for 35 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 9:1), 60 mg (77%) of **15f** as a clear oil; $R_f = 0.21$ (hexanes/EtOAc, 93:7).

IR (neat): 2978, 2932, 1726, 1613, 1512, 1370, 1248, 1207, 1152, 1032 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.36 (d, 2H, *J* = 8.8, Ar*H*), 6.85 (d, 2H, *J* = 8.8, Ar*H*), 5.93 (tq, 1H, *J* = 6.3, 1.3, CC=C*H*), 5.28 (d, 1H, *J* = 2.4, C=CH*H*), 4.60 (d, 1H, *J* = 2.4, C=C*H*H), 4.51 (d, 2H, *J* = 6.3, OC*H*₂), 3.81 (s, 3H, OC*H*₃), 2.07 (m, 3H, C*H*₃C=C), 1.52 (s, 9H, C(C*H*₃)₃);

¹³C NMR (75 MHz, CDCl₃): δ 162.3 (*C*=O), 159.1 (ArC_{ipso}), 152.0 (*C*=CH₂), 138.1 (ArC_{ipso}), 135.0 (ArC=CH), 126.9 (2 x ArC), 120.6 (ArC=CH), 113.6 (2 x ArC), 93.4 (C=CH₂), 81.8 (*C*(CH₃)₃), 66.0 (OCH₂), 55.3 (OCH₃), 28.0 (CH₃)₃, 16.3 (CH₃); HRMS (APPI, neg.): *m/z* 304.1669 (304.1675 calc. for C₁₈H₂₄O₄ (M⁺)).

tert-Butyl (*E*)-2-(3-(3-methoxyphenyl)but-2-enyloxy)acrylate (15g):

The reaction of **13** (114 mg, 0.35 mmol), 3-methoxyphenylboronic acid (53 mg, 0.35 mmol), PdCl₂(dppf)·CH₂Cl₂ (4.10 mg, 0.005 mmol), Ag₂O (81 mg, 0.35 mmol) and KOH (20 mg, 0.35 mmol) in dioxane (1.2 mL) for 20 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 93:7), 87 mg (82%) of **15g** as a clear oil; $R_f = 0.22$ (hexanes/EtOAc, 93:7).

IR (neat): 2979, 2936, 1725, 1614, 1580, 1370, 1319, 1288, 1207, 1149, 1038 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.23 (t, 1H, *J* = 8.0, Ar*H*), 7.03-6.99 (m, 1H, Ar*H*), 6.96-6.94 (m, 1H, Ar*H*), 6.81 (br dd, 1H, *J* = 8.2, 2.5, Ar*H*), 6.01 (tq, 1H, *J* = 6.1, 1.3, CH₃C=C*H*), 5.29 (d, 1H, *J* = 2.4, C=CH*H*), 4.60 (d, 1H, *J* = 2.4, C=C*H*H), 4.52 (br d, 2H, *J* = 6.1, OC*H*₂), 3.82 (s, 3H, OC*H*₃), 2.09-2.06 (m, 3H, C*H*₃C=CH), 1.52 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (*C*=O), 159.5 (Ar*C*_{ipso}), 152.0 (*C*=CH₂), 144.1 (Ar*C*_{ipso}), 138.4 (CH₃*C*=CH), 129.2 (Ar*C*), 122.5 (CH₃*C*=*C*H), 118.3 (Ar*C*), 112.8 (Ar*C*), 111.6 (Ar*C*), 93.5 C=*C*H₂), 81.8 (*C*(CH₃)₃), 65.9 (OCH₂), 55.3 (OCH₃), 28.0 (*C*H₃)₃, 16.4 (*C*H₃); HRMS (APPI, neg.): *m*/*z* 304.1668 (304.1675 calc. for C₁₈H₂₄O₄ (M⁺)).

tert-Butyl (*E*)-2-((3-(thiophen-2-yl)but-2-en-1-yl)oxy)acrylate (15h):

The reaction of **13** (101 mg, 0.31 mmol), 2-thienylboronic acid (0.31 mmol), $PdCl_2(dppf) \cdot CH_2Cl_2$ (0.004 mmol), Ag₂O (0.31 mmol) and KOH (0.31 mmol) in dioxane (1.1 mL) for 4h according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 37 mg (43%) of **15h** as clear oil; $R_f = 0.20$ (hexanes/EtOAc, 97:3).

IR (neat): 2979, 1723, 1617, 1369, 1315, 1206, 1148, 849 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.16 (dd, 1H, J = 5.1, 1.2, ArH), 7.05 (dd, 1H, J = 3.6, 1.2, ArH), 6.97 (dd, 1H, J = 5.1, 3.6, ArH), 6.13 (tq, 1H, J = 6.4, 1.3, CH₃C=CH), 5.29 (d, 1H, J = 2.5, C=CHH), 4.59 (d, 1H, J = 2.5, C=CHH), 4.50 (br d, 2H, J = 6.4, OCH₂), 2.12-2.09 (m, 3H, CH₃C=CH), 1.52 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (*C*=O), 152.0 (*C*=CH₂), 146.4 (ArC_{ipso}), 132.7 (CH₃C=CH), 127.3 (CH₃C=CH), 124.3 (ArC), 123.4 (ArC), 120.5 (ArC), 93.6 (C=CH₂), 81.9 (*C*(CH₃)₃), 65.5 (OCH₂), 28.0 (*C*H₃)₃, 16.3 (*C*H₃); HRMS (APPI, neg.): *m*/*z* 280.1120 (280.1133 calc. for C₁₅H₂₀O₃S (M⁺)).

tert-Butyl (*E*)-2-((3-2-cyanophenyl)but-2-en-1-yl)oxy)acrylate (15i):

The reaction of **13** (90 mg, 0.27 mmol), 2-cyanophenylboronic acid (0.27 mmol), $PdCl_2(dppf) \cdot CH_2Cl_2$ (0.004 mmol), Ag_2O (0.27 mmol) and KOH (0.27 mmol) in dioxane (1 mL) for 4h according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 9:1), 38 mg (47%) of **15i** as clear oil; $R_f = 0.20$ (hexanes/EtOAc, 93: 7).

IR (neat): 2979, 2933, 2225, 1724, 1619, 1370, 1336, 1317, 1288, 1206, 1148, 1030 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.66 (dd, 1H, *J* = 8.0, 1.4, Ar*H*), 7.54 (dt, 1H, *J* = 7.7, 1.4, Ar*H*), 7.38-7.32 (m, 1H, Ar*H*), 5.87 (tq, 1H, *J* = 6.0, 1.4, CC=C*H*), 5.32 (d, 1H, *J* = 2.6, C=CH*H*), 4.64 (d, 1H, *J* = 2.6, C=C*H*H), 4.55 (d, 2H, *J* = 6.0, OC*H*₂), 3.81 (s, 3H, OC*H*₃), 2.15 (m, 3H, C*H*₃C=C), 1.52 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.1 (*C*=O), 151.8 (*C*=CH₂), 148.2 (Ar*C*_{ipso}), 136.9 (Ar*C*=CH), 133.3 (Ar*C*), 132.6 (Ar*C*), 128.5 (Ar*C*), 127.6 (Ar*C*=*C*H or Ar*C*), 127.5 (Ar*C* or Ar*C*=*C*H), 118.4 (*C*N), 110.6 (Ar*C*_{ipso} (*C*-CN)), 93.8 (C=*C*H₂), 81.9 (*C*(CH₃)₃), 65.4 (O*C*H₂), 28.0 (*C*H₃)₃, 18.0 (*C*H₃); HRMS (APPI, neg.): *m*/*z* 299.1520 (299.1521 calc. for C₁₈H₂₁NO₃ (M⁺)).

tert-Butyl (E)-2-((3-(4-bromophenyl)but-2-en-1-yl)oxy)acrylate (15j):

The reaction of **13** (97 mg, 0.30 mmol), 4-bromophenylboronic acid (60 mg, 0.30 mmol), $PdCl_2(dppf) \cdot CH_2Cl_2$ (3.30 mg, 0.004 mmol), Ag_2O (69 mg, 0.30 mmol) and KOH (17 mg, 0.30 mmol) in dioxane (1.1 mL) for 40 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 9:1), 63 mg (60%) of **15j** as a clear oil; $R_f = 0.26$ (hexanes/EtOAc, 92:8).

IR (neat): 2979, 2932, 1724, 1617, 1484, 1368, 1335, 1316, 1206, 1148, 1007, 848, 812 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.43 (d, 2H, *J* = 8.5, Ar*H*), 7.27 (d, 2H, *J* = 8.5, Ar*H*), 6.00 (tq, 1H, *J* = 6.1, 1.3, CC=CH), 5.29 (d, 1H, *J* = 2.5, C=CHH), 4.59 (d, 1H, *J* = 2.5, C=CHH), 4.50 (d, 2H, *J* = 6.1, OCH₂), 2.06 (m, 3H, CH₃C=C), 1.52 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.1 (*C*=O), 151.9 (*C*=CH₂), 141.4 (Ar*C*_{ipso}), 137.6 (Ar*C*=CH), 131.4 (2 x Ar*C*), 127.4 (2 x Ar*C*), 122.9 (Ar*C*_{ipso} (C-Br) or ArC=CH), 121.3 (ArC=CH or Ar*C*_{ipso} (C-Br)), 93.5 (C=CH₂), 81.9 (*C*(CH₃)₃), 65.8 (OCH₂), 28.0 (*C*H₃)₃, 16.3 (*C*H₃); HRMS (APPI, neg.): *m*/*z* 352.0684 (352.0674 calc. for C₁₇H₂₁BrO₃ (M⁺)).

tert-Butyl (Z)-2-(3-methylhept-2-enyloxy)acrylate (16a):

The reaction of **14** (75 mg, 0.23 mmol), butylboronic acid (26 mg, 0.25 mmol), Pd(PPh₃)₄ (26 mg, 0.023 mmol), Ag₂O (133 mg, 0.57 mmol) and K₂CO₃ (95 mg, 0.69 mmol) in THF (1 mL) for 1 h according to General Procedure 2 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 38 mg (67%) of **16a** as a clear oil; $R_f = 0.24$ (hexanes/EtOAc, 97:3).

IR (neat): 2961, 2931, 2867, 1729, 1617, 1370, 1324, 1207, 1154, 848 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.46-5.41 (br t, 1H, J = 6.3, CH₃C=CH), 5.23 (d, 1H, J = 2.3, C=CHH), 4.53 (d, 1H, J = 2.3, C=CHH), 4.28 (d, 2H, J = 6.7, OCH₂), 2.06 (t, 2H, J = 7.4, C=CCH₂), 1.74 (m, 3H, C=CCH₃), 1.51 (s, 9H, C(CH₃)₃), 1.44-1.26 (m, 4H, CH₂CH₂), 0.90 (t, 3H, CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (C=O), 152.1 (C=CH₂), 141.7 (BuC=C), 119.4 (C=CH), 92.9 (C=CH₂), 81.6 (*C*(CH₃)₃), 65.0 (OCH₂), 32.0, 30.2, 27.9, 23.4, 22.6, 13.9; HRMS (APPI, neg.): *m*/*z* 254.1879 (254.1882 calc. for C₁₅H₂₆O₃ (M⁺)).

tert-Butyl (Z)-2-(3,5-dimethylhex-2-enyloxy)acrylate (16b):

The reaction of **14** (50 mg, 0.15 mmol), (2-methylpropyl)boronic acid (17 mg, 0.16 mmol), Pd(PPh₃)₄ (17 mg, 0.014 mmol), Ag₂O (87 mg, 0.37 mmol) and K₂CO₃ (62 mg, 0.45 mmol) in THF (1 mL) for 3 h according to General Procedure 2 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 95:5), 24 mg (63%) of **16b** as a clear oil; $R_f = 0.24$ (hexanes/EtOAc, 97:3).

IR (neat): 2957, 2930, 2871, 1727, 1616, 1460, 1369, 1317, 1254, 1206, 1150, 1019 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.54-5.46 (br t, 1H, J = 6.5, CH₃C=CH), 5.23 (d, 1H, J = 2.3, C=CHH), 4.53 (d, 1H, J = 2.4, C=CHH), 4.28 (br d, 2H, J = 6.6, OCH₂), 1.94 (d, 2H, 7.3, CH₂CH(CH₃)₂), 1.85-1.75 (m, 1H, CH(CH₃)₂, 1.75-1.70 (m, 3H, CH₃C=C), 1.51 (s, 9H, C(CH₃)₃), 0.88 (d, 6H, J =6.5, CH(CH₃)₂; ¹³C NMR (75 MHz, CDCl₃): δ 162.3 (C=O), 152.1 (CH₃C=CH₂), 140.4 (*i*BuC=CH), 120.7 (C=CH), 93.0 (C=CH₂), 81.7 (C(CH₃)₃, 65.1 (OCH₂), 41.6 (CH₂CH(CH₃)₂; 28.0 (C(CH₃)₃, 26.7 (CH(CH₃)₂ or CH₃C=C), 23.7 (CH₃C=C or CH(CH₃)₂), 22.5 (CH(CH₃)₂; HRMS (APPI, pos.): *m/z* 254.1880 (254.1882 calc. for C₁5H₂6O₃ (M⁺)).

The reaction of **14** (88 mg, 0.27 mmol), 3,4-dimethoxyphenylboronic acid (49 mg, 0.27 mmol), PdCl₂(dppf)·CH₂Cl₂ (3.30 mg, 0.004 mmol), Ag₂O (62 mg, 0.27 mmol) and KOH (15 mg, 0.27 mmol) in dioxane (1 mL) for 30 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 93:7), 60 mg (67%) of **16c** as a clear oil; $R_f = 0.21$ (hexanes/EtOAc, 95:5).

IR (neat): 2976, 2937, 1724, 1616, 1513, 1460, 1370, 1318, 1255, 1205, 1146, 1025, 911, 849 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.88-6.81 (d, 1H, *J* = 8.0, Ar*H*), 6.79-6.72 (m, 2H, Ar*H*), 5.78-5.72 (tq, 1H, *J* = 7.0, 1.4, CC=C*H*), 5.16 (d, 1H, *J* = 2.3, C=CH*H*), 4.37 (d, 1H, *J* = 2.3, CC=C*H*H), 4.20 (br dd, 2H, *J* = 7.0, 1.1, CC*H*₂), 3.89 (s, 3H, ArOC*H*₃), 3.85 (s, 3H, ArOC*H*₃), 2.10 (m, 3H, C=CC*H*₃), 1.51 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (*C*=O), 151.7 (Ar*C*_{ipso}), 148.5 (Ar*C*_{ipso}), 148.3 (*C*=CH₂), 142.4 (Ph*C*=CH), 133.2 (Ar*C*_{ipso}), 121.0 (Ar*C*=*C*H), 120.0 (Ar*C*), 111.2 (Ar*C*), 110.9 (Ar*C*), 93.2 (C=*C*H₂), 81.7 (*C*(CH₃)₃, 66.1 (*C*H₂-O), 55.87 (O*C*H₃), 55.80 (O*C*H₃), 28.0 (*C*H₃)₃, 25.3 (*C*H₃); HRMS (APPI, pos.): *m*/*z* 334.1778 (334.1780 calc. for C₁₉H₂₆O₅ (M⁺)).

tert-Butyl (Z)-2-(3-(4-(benzyloxycarbonylamino)phenyl)but-2-enyloxy)acrylate (16d):

The reaction of **14** (95 mg, 0.29 mmol), 4-Cbz-aminophenylboronic acid boronic acid (79 mg, 0.29 mmol), PdCl₂(dppf)·CH₂Cl₂ (3.60 mg, 0.004 mmol), Ag₂O (67 mg, 0.29 mmol) and KOH (16 mg, 0.29 mmol) in dioxane (1.1 mL) for 30 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 85:15), 102 mg (84 %) of **16d** as a clear oil; $R_f = 0.25$ (hexanes/EtOAc, 85:15); IR (neat): 3350, 2977, 1710, 1614, 1593, 1525, 1316, 1208, 1149, 1050 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.45-7.27 (br m, 7H, Ar*H*), 7.12 (br d, 2H, Ar*H*, *J* = 6.8), 6.95-6.65 (br, 1H, N*H*) 5.73 (br t, 1H, *J* = 6.8, C=C*H*), 5.20 (br s, 2H, ArC*H*₂O), 5.15 (d, 1H, 2.3, C=CH*H*), 4.33 (d, 1H, 2.3, CC=C*H*H), 4.20 (br d, 2H, *J* = 6.8, OC*H*₂), 2.07 (br s, 3H, C=CC*H*₃), 1.50 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.3 (*C*=O), 153.4 (*C*(O)NH₂), 151.6 (*C*=CH₂), 141.2 (Ar*C*_{ipso}), 137.1 (Ar*C*_{ipso}), 136.0 (Ar*C*_{ipso}), 135.6 (Ph*C*=CH), 128.6 (2 x Ar*C*) 128.5 (2 x Ar*C*), 128.38 (2 x Ar*C*), 128.33 (2 x Ar*C*), 121.6 (ArC=*c*H), 118.4

(Ar*C*), 93.3 (C=*C*H₂), 81.7 (*C*(CH₃)₃, 67.0 (Ph*C*H₂ or O*C*H₂), 66.0 (O*C*H₂ or Ph*C*H₂), 28.0 (*C*H₃)₃, 25.1 (*C*H₃); HRMS (APPI, pos.): *m*/*z* 254.1875 (254.1882 calc. for C₁₅H₂₆O₃ (M⁺)).

tert-Butyl (Z)-2-(3-phenylbut-2-enyloxy)acrylate (16e):

The reaction of **14** (100 mg, 0.30 mmol), phenylboronic acid (36 mg, 0.30 mmol), PdCl₂(dppf)·CH₂Cl₂ (3.30 mg, 0.004 mmol), Ag₂O (69 mg, 0.30 mmol) and KOH (17 mg, 0.30 mmol) in dioxane (1.1 mL) for 20 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/Et₂O, 9:1), 59 mg (72%) of **16e** as a clear oil; $R_f = 0.22$ (hexanes/Et₂O, 96:4); IR (neat): 2978, 2935, 1723, 1617, 1368, 1319, 1205, 1148, 912 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.23 (m, 3H, Ar*H*), 7.21-7.14 (m, 2H, Ar*H*), 5.77 (tq, 1H, J = 6.7, 1.4, C=CC*H*CH₂), 5.14 (d, 1H, J = 2.3, C=CH*H*), 4.33 (d, 1H, J = 2.3, C=C*H*H), 4.21 (br dq, 2H, J = 6.7, 1.4 OC*H*₂), 2.10 (m, 3H, CH₃C=C), 1.51 (s, 9H, COC(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (C=O), 151.7 (C=CH₂), 141.8 (PhC=CH), 140.5 (Ar*C*_{ipso}), 128.2 (2 x Ar*C*), 127.7 (2 x Ar*C*), 127.4 (Ar*C*), 121.7 (PhC=*C*H), 93.2 (C=*C*H₂), 81.7 (*C*CH₃)₃, 66.1 (*C*H₂O), 28.0 (*C*H₃)₃, 25.3 (C=CCH₃); HRMS (APPI, neg.): *m*/*z* 274.1556 (274.1569 calc. for C₁₇H₂₂O₃ (M⁺)).

tert-Butyl (Z)-2-((3-(furan-3-yl)but-2-en-1-yl)oxy)acrylate (16f):

The reaction of **14** (99 mg, 0.30 mmol), 3-furanylboronic acid (34 mg, 0.30 mmol), PdCl₂(dppf)·CH₂Cl₂ (3.67 mg, 0.004 mmol), Ag₂O (69 mg, 0.30 mmol) and KOH (17 mg, 0.30 mmol) in dioxane (1.2 mL) for 3h according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 97:3), 51 mg (65%) of **16f** as a clear oil; $R_f = 0.24$ (hexanes/EtOAc, 97:3); IR (neat): 2923, 2853, 1727, 1619, 1456, 1368, 1320, 1256, 1206, 1152, 1023, 956, 873 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.41 (d, 2H, J = 1.4, ArH), 6.41 (t, 1H, J = 1.4, ArH), 5.71 (tq, 1H, J = 6.6, 1.3, CH₃C=CH), 5.23 (d, 1H, J = 2.4, C=CHH), 4.48 (d, 1H, J = 2.4, C=CHH), 4.37 (br m, 2H, J = 6.6, OCH₂), 2.04 (br q, 3H, J = 1.3, CH₃C=CH), 1.52 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (*C*=O), 151.7 (*C*=CH₂), 143.0 (Ar*C*), 140.4 (Ar*C*), 132.2 (CH₃C=CH or Ar*C*_{ipso}), 124.3 (Ar*C*_{ipso} or CH₃C=CH), 121.7 (CH₃C=CH), 110.1 (Ar*C*), 93.4 (C=CH₂), 81.8 (*C*(CH₃)₃), 65.8 (OCH₂), 28.0 (C(CH₃)₃), 24.1 (CH₃C=CH); HRMS (APPI, pos.): m/z 264.1345 (264.1362 calc. for C₁₅H₂₀O₄ (M⁺)).

tert-Butyl (Z)-2-(3-(biphenyl-4-yl)but-2-enyloxy)acrylate (16g):

The reaction of **14** (98 mg, 0.30 mmol), 4-biphenylboronic acid (59 mg, 0.30 mmol), PdCl₂(dppf)·CH₂Cl₂ (3.70 mg, 0.004 mmol), Ag₂O (69 mg, 0.30 mmol) and KOH (17 mg, 0.30 mmol) in dioxane (1.1 mL) for 30 min according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 93:7), 70 mg (67%) of **16g** as a clear oil; $R_f = 0.25$ (hexanes/EtOAc, 93:7).

IR (neat): 2976, 2935, 1724, 1616, 1368, 1318, 1205, 1147, 1012 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.63-7.53 (m, 4H, Ar*H*), 7.47-7.40 (m, 2H, Ar*H*), 7.37-7.25 (m, 3H, Ar*H*), 5.81 (tq, 1H, *J* = 6.7, 1.4, C=C*H*), 5.17 (d, 1H, *J* = 2.3, C=CH*H*), 4.37 (d, 1H, *J* = 2.3, C=C*H*H), 4.27 (br dd, 2H, *J* = 6.7, 1.2, OC*H*₂), 2.14 (m, 3H, C=CC*H*₃), 1.51 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.3 (*C*=O), 151.7 (*C*=CH₂), 141.4 (Ar*C*_{ipso}), 140.7 (Ar*C*_{ipso}), 140.2 (Ar*C*_{ipso}), 139.5 (Ph*C*=CH), 128.8 (2 x Ar*C*), 128.2 (2 x Ar*C*), 127.4 (Ar*C*), 127.0 (2 x Ar*C*), 126.9 (2 x Ar*C*), 122.0 (Ar*C*=*C*H), 93.3 (C=*C*H₂), 81.7 (*C*(CH₃)₃, 66.1 (OCH₂), 28.0 (CH₃)₃, 25.2 (CH₃); HRMS (APPI, neg.): *m/z* 423.2047 (423.2046 calc. for C₂₅H₂₉NO₅ (M⁺)).

tert-Butyl (Z)-2-(3-(naphthalen-1-yl)but-2-enyloxy)acrylate (16h):

The reaction of **14** (101 mg, 0.31 mmol), 1-naphthylboronic acid (53 mg, 0.31 mmol), $PdCl_2(dppf) \cdot CH_2Cl_2$ (3.80 mg, 0.004 mmol), Ag_2O (72 mg, 0.31 mmol) and KOH (17 mg, 0.31 mmol) in dioxane (1.1 mL) for 1 h according to General Procedure 1 provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 93:7), 80 mg (80%) of **16h** as clear oil; $R_f = 0.22$ (hexanes/EtOAc, 93:7).

IR (neat): 2975, 2934, 1724, 1617, 1369, 1316, 1205, 1147, 1020 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.90-7.74 (m, 3H, Ar*H*), 7.51-7.40 (m, 3H, Ar*H*), 7.27-7.22 (m, 1H, Ar*H*), 6.02 (tq, 1H, J = 6.4, 1.5, CH₃C=C*H*), 5.04 (d, 1H, J = 2.4, C=CH*H*), 4.19 (d, 1H, J = 2.4, C=C*H*H), 3.99-3.91 (br m, 2H, OC*H*₂), 2.16 (br q, 3H, J = 1.4, C*H*₃C=C), 1.48 (s, 9H, C(C*H*₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 162.2 (*C*=O), 151.7 (*C*=CH₂), 140.0 (Ar*C*_{ipso}), 138.8 (Ar*C*=C), 133.7 (Ar*C*_{ipso}), 130.6 (Ar*C*_{ipso}), 128.4 (Ar*C*), 127.5 (Ar*C*), 126.2 (Ar*C*), 125.9 (Ar*C*), 125.5 (Ar*C*), 125.2 (Ar*C*), 124.9 (Ar*C*), 123.9 (ArC=CH), 93.2 (C=CH₂), 81.6 C(CH₃)₃), 66.4 (OCH₂), 28.0 (C(CH₃)₃), 26.1 (CH₃C=C); HRMS (APPI, neg.): *m*/z 324.1721 (324.1725 calc. for C₂₁H₂₄O₃ (M⁺)).

General procedure for the rearrangement of 15 to 17:

To a suspension of $Cu(OTf)_2$ in ether was added **15** and the mixture was stirred at ambient temperature for 1 h. To the resulting solution was added a solution of the allyl vinyl ether in ether. The resulting solution was stirred at ambient temperature for the specified time. The solution was concentrated and the residue was purified by flash chromatography on silica gel to provide **17**.

tert-Butyl (S)-4-methyl-2-oxo-4-vinyloctanoate (17a):

Treatment of **15a** (60 mg, 0.24 mmol) with the complex derived from Cu(OTf)₂ (8.7 mg, 0.024 mmol) and (*R*,*R*)-2,2'-isopropylidene-bis(4-phenyl-2-oxazoline) (8 mg, 0.024 mmol) in ether (1 mL) for 92 h according to the general procedure provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 97:3), 35 mg (58%) of **17a** as a clear oil; $R_f = 0.27$ (hexanes/EtOAc, 97:3).

IR (neat): 3084, 2958, 2930, 1720, 1460, 1370, 1283, 1257, 1155, 1056, 1008, 914, 866 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.81 (dd, 1H, J = 17.5, 10.8, CH=CH₂), 5.00 (dd, 1H, J = 10.8, 1.0, CH=CH₂), 4.93 (dd, 1H, J = 17.5, 1.0, CH=CH₂), 2.90 (d, 1H, J = 14.2, CH₂C(O)), 2.68 (d, 1H, J = 14.2, CH₂C(O)), 1.54 (s, 9H, C(CH₃)₃), 1.45-1.35 (m, 2H, CH₂CH₂), 1.30-1.15 (m, 4H, CH₂CH₂), 1.09 (s, 3H, CH₃), 0.88 (t, 3H, J = 7.0, CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 195.2 (C(O)CO₂tBu), 161.3 (CO₂tBu), 145.1 (CH=CH₂), 112.6 (CH=CH₂), 83.7 (C(CH₃)₃), 47.9 (CH₂C(O)), 40.7 (CH₂), 39.8 (Cquat.), 27.8 (C(CH₃)₃), 26.2 (CH₂), 23.2 (CH₂), 22.7 (CH₃), 14.0 (CH₃); HRMS (APPI, pos.): m/z 254.1875 (254.1882 calc. for C₁₅H₂₆O₃ (M⁺)); HPLC: Chiralpak AS-H (hexane/*i*-PrOH, 99.5:0.5, flow rate 1 mL min⁻¹, λ = 254 nm): t_{major} = 3.70; t_{minor} 3.25 min; 98% ee.

tert-Butyl (S)-4-methyl-2-oxo-4-phenylhex-5-enoate (17e):

Treatment of **15e** (30 mg, 0.11 mmol) with the complex derived from Cu(OTf)₂ (4 mg, 0.011 mmol) and (*R*,*R*)-2,2'-isopropylidenebis(4-phenyl-2-oxazoline) (3.70 mg, 0.011 mmol) in ether (0.5 mL) for 67 h according to the general procedure provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 98:2), 16 mg (53%) of **17e** as a clear oil; R_f = 0.21 (hexanes/EtOAc, 98:2).

IR (neat): 2980, 1720, 1413, 1289, 1257, 1155, 1055, 1008, 920, 838 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.32-7.28 (m, 4H, Ar*H*), 7.23-7.15 (m, 1H, Ar*H*), 6.15 (dd, 1H, *J* = 17.4, 10.7, C*H*=CH₂), 5.14 (dd, 1H, *J* = 10.7, 0.8, CH=C*H*H), 5.09 (dd, 1H, *J* = 17.4, 0.8, CH=CH*H*), 3.29 (s,

2H, CH₂C(O)), 1.52 (s, 3H, CH₃), 1.45 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 194.3 (*C*(O)CO₂*t*Bu), 160.8 (*C*O₂*t*Bu), 145.6 (Ar*C*_{ipso}), 145.0 (CH=CH₂), 128.4 (2 x Ar*C*), 126.5 (Ar*C*), 126.3 (2 x Ar*C*), 112.8 (CH=*C*H₂), 83.7 (*C*(CH₃)₃), 48.0 (*C*H₂C(O)), 43.6 (Ar-*C*-CH₃), 27.7 (C(CH₃)₃), 25.2 (Ar-C-CH₃); HRMS (APPI, pos.): *m*/*z* 274.1575 (274.1569 calc. for C₁₇H₂₂O₃ (M⁺)); HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 99.6/0.4, flow rate 1 mL min⁻¹, λ = 254 nm): *t*_{major} = 6.77; *t*_{minor} 7.50 min; 45% ee.

tert-Butyl (S)-4-(4-bromophenyl)-4-methyl-2-oxohex-5-enoate (17j):

Treatment of **15j** (50 mg, 0.14 mmol) with the complex derived from Cu(OTf)₂ (5.2 mg, 0.014 mmol) and (*R*,*R*)-2,2'-isopropylidenebis(4-phenyl-2-oxazoline) (4.8 mg, 0.014 mmol) in ether (0.5 mL) for 120 h according to the general procedure provided, after purification by flash chromatography on silica gel (hexanes/EtOAc, 98:2), 49 mg (48%) of **17j** as a clear oil; R_f = 0.22 (hexanes/EtOAc, 98:2).

IR (neat): 2979, 2935, 1720, 1490, 1396, 1370, 1290, 1256, 1155, 1054, 1008, 921, 824 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.41 (d, 2H, J = 8.7, Ar*H*), 7.18 (d, 2H, J = 8.7, Ar*H*), 6.08 (dd, 1H, J = 17.4, 10.7, CH=CH₂), 5.15 (dd, 1H, J = 10.7, 0.7, CH=CHH), 5.08 (dd, 1H, J = 17.4, 0.7, CH=CH*H*), 3.26 (AB system, 2H, J = 15.3, CH₂C(O)), 1.49 (s, 3H, CH₃), 1.46 (s, 9H, C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃): δ 193.8 (C(O)CO₂tBu), 160.7 (CO₂tBu), 144.57 (CH=CH₂), 144.52 (ArC_{ipso}), 131.4 (2 x ArC), 128.3 (2 x ArC), 120.5 (ArC-Br), 113.2 (CH=CH₂), 84.0 (C(CH₃)₃), 47.8 (CH₂C(O)), 43.3 (Ar-C-CH₃), 27.7 (C(CH₃)₃), 25.2 (Ar-C-CH₃); HRMS (APPI, pos.): *m/z* 352.0667 (352.0674 calc. for C₁₇H₂₁BrO₃ (M⁺)); HPLC: Chiralpak AD-H (hexane/*i*-PrOH, 99.6/0.4, flow rate 1 mL min⁻¹, λ = 254 nm): *t*major = 8.06; *t*minor 9.04 min; 56% ee.

References

- 1. C.-G. Cho, W.-S. Kim and A. B. Smith, III Org. Lett., 2005, 7, 3569.
- 2. (a) X.-Y. Lu, G.-X. Zhu and S.-M. Ma, *Chin. J. Chem.*, 1993, **11**, 267; (b) E. Piers, C. L. Harrison and C. Zetina-Rocha *Org. Lett.*, 2001, **3**, 3245.
- 3. F. E. McDonald, K. Ishida and J. A. Hurtak, Tetrahedron, 2013, 69, 7746.
- 4. B. Zhao and T.-P. Loh, Org. Lett., 2013, 15, 2914.
- 5. J. F. Payack, D. L. Hughes, D. Cai, I. F. Cottrell and T. R. Verhoeven Org. Prep. Proc. Int., 1995, 27, 707. In our studies, the purity of titanocene dichloride used to prepare the Petasis reagent was found to be critical for the successful methylenation of 9 and 10. The reported yields of 13 and 14 were obtained when 99+% pure, commercial titanocene dichloride was used. The use of titanocene dichloride with lower purity (97%, commercial) significantly reduced the yield of the methylenation reaction.

Project Name Gopinathan Reported by User: Breeze user (Breeze)

Project Name Gopinathan Reported by User: Breeze user (Breeze)

	SAMP	LE INFORMAT	ION	
Sample Name: Sample Type: Vial: Injection #: Injection Volume Run Time:	GM-06-97 Unknown 1 1 : 10.00 ul 15.00 Minutes	Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name	Breeze 18/10/2016 4:05:18 F AS_H 99_5%Hex 0_5 18/10/2016 4:15:56 F 2487Channel 1	PM NDT 5% IPA PM NDT
1.60- 1.40- 1.20- 1.00- 0.80- 0.60- 0.40- 0.20- 0.00-	3.703	17a		
2	2.00 4.00	6.00 8.00 Minutes	10.00 12.00	14.00
Г	RT Area	Height %		

	RI (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	3.250	97998	0.95	21496	1.35
2	3.703	10239846	99.05	1574798	98.65

Project Name Gopinathan Reported by User: Breeze user (Breeze)

Project Name	Gopinathan		
Reported by User:	Breeze user (Breeze)		

	SAMPLE	INFORMAT	ΙΟΝ
Sample Name:	GM-03-89	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	26/08/2016 12:33:50 PM NDT
Vial:	1	Acq. Method:	AD_H 99_6% Hex 0_4% IPA
Injection #:	1	Date Processed:	26/08/2016 12:45:36 PM NDT
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	15.00 Minutes	Sample Set Name	

1

7.497

96905

27.49

10134

25.03

Project Name	Gopinathan		
Reported by User:	Breeze user (Breeze)		

	SAMPLE	INFORMAT	ION
Sample Name:	GM-02-100 purified	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	23/08/2016 8:26:33 PM NDT
Vial:	1	Acq. Method:	AD_H 99_6% Hex 0_4% IPA
Injection #:	1	Date Processed:	23/08/2016 8:38:36 PM NDT
Injection Volume:	10.00 ul	Channel Name:	2487Channel 1
Run Time:	15.00 Minutes	Sample Set Name	

	(min)	(µV*sec)	% Area	(µV)	Height
1	8.036	124362	49.47	12619	53.33
2	8.901	127043	50.53	11043	46.67

Project Name	Gopinathan		
Reported by User:	Breeze user (Breeze)		

		SAMPLE INFORMATION
	Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	GM-03-96 BAcquired By:BreezeUnknownDate Acquired:16/08/2015 10:06:48 PM NDT1Acq. Method:AD_H 99_6% Hex 0_4% IPA1Date Processed:26/09/2016 10:49:04 AM NDT10.00 ulChannel Name:2487Channel 115.00 MinutesSample Set Name
AU	0.070 0.060 0.050 0.040 0.030 0.020 0.010 0.000 2.	Br-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G
	Г	RT Area of Area Height %

	(min)	Area (µV*sec)	% Area	Height (μV)	% Height
1	8.057	851673	77.91	68520	78.49
2	9.038	241468	22.09	18781	21.51