# SUPPORTING INFORMATION

# Regioselective "hydroamination" of alk-3-ynones with non-symmetrical o-phenylenediamines.

# Synthesis of diversely substituted 3H-1,5-benzodiazepines via (Z)-3-amino-2-alkenones

Jonathon Young,<sup>†</sup> Christian Schäfer,<sup>‡</sup> Agnes Solan,<sup>†</sup> Anthony Baldrica,<sup>†</sup> Miranda Belcher,<sup>†</sup> Bilal Nişanci,<sup>‡,#</sup> Kraig A. Wheeler,<sup>§</sup> Evan Trivedi,<sup>†</sup> Béla Török,<sup>‡,\*</sup> and Roman Dembinski<sup>†,±,\*</sup>

<sup>†</sup>Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309-4479, USA. <sup>‡</sup>Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, USA. <sup>§</sup>Department of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, Illinois 61920-3099, USA. <sup>±</sup>Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Łódź, Poland

Email Address: dembinsk@oakland.edu, bela.torok@umb.edu

## Table of Contents:

| (Other spectra were communicated in Green Chem. 2014, 16, 1120.) |         |
|------------------------------------------------------------------|---------|
| Experimental Section, including Corrections                      | S2      |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>5ac</b>    | S3–S4   |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>5ad</b>    | S5–S6   |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>5af</b>    | S7–S8   |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>5ag</b>    | S9–S10  |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>5ah</b>    | S11–S12 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8da</b>    | S13–S14 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8ea</b>    | S15–S16 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8eb</b>    | S17–S18 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8fa</b>    | S19–S20 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8ac</b>    | S21–S22 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8ad</b>    | S23–S24 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8ae</b>    | S25–S26 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8af</b>    | S27–S28 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8ag</b>    | S29–S30 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectrum of <b>8ah</b>    | S31–S32 |
| DSC traces for <b>5ab</b>                                        | S33     |
| Table S1. Crystal data for enaminones 2, 3, 5ad, and 5cb         | S34     |
| Table S2. Crystal data for diazepines 8aa, 8ae, and 8ah          | S35     |
| Deuterated solvent (MeOD) experimental data and product ratios   | S36     |

RSC Advances 2016, 6, 107081. doi: 10.1039/c6ra24291j

# **Experimental Section**

**Corrections**. The manuscript states that <sup>13</sup>C NMR chemical shifts were reported in  $\delta$  (ppm) values relative to C<sub>6</sub>D<sub>6</sub> at 128.06 ppm. However, <sup>13</sup>C NMR tabulated data and spectra were referenced to 128.39 ppm.

Page 107086, left column, third paragraph, line 6: "vinamidine form **H9**" should read "vinamidine form **9**"

Page 107093, reference 30, line 2: "allenoue" should read "allenone"

**Materials**. Triethylamine was distilled over CaH<sub>2</sub>. *o*-Phenylenediamine (Mallickrodt), 3,4-diaminotoluene, 3,4-diaminobenzophenone, 4,5-dimethyl-1,2-phenylenediamine (Aldrich), 4methoxy-*o*-phenylenediamine (Ark Pharm or Alfa Aesar), 4-nitro-*o*-phenylenediamine (Alfa Aesar), 2,3-diaminobenzamide (Synthonix), ethanol (reagent grade 200 proof anhydrous, Pharmco Aaper), anhydrous ethanol (packaged under argon, Alfa Aesar), silica gel (Dynamic Adsorbents, 32-63  $\mu$ ), and TLC plates (Whatman, hexanes/ethyl acetate 80:20) were used as received. Other materials not listed were used as received.

**Fluorescence Quantum Yield**. Fluorescence quantum yield ( $\Phi_f$ ) was determined in ethanol by the relative method,<sup>1</sup> using 9,10-dimethylanthracene as a standard,<sup>2</sup> 275 nm excitation, and analysis with Eq. (1) where *r* and *x* denote the reference and unknown, respectively, *A* is the absorption at excitation wavelength, *F* is the integrated fluorescence intensity. Consideration of refractive index was not necessary as both reference and unknown samples were measured in the same solvent. To avoid re-absorption and self-quenching, all working solutions absorbed less than 0.1 AU.

$$\Phi_{\chi} = \Phi_r \cdot \frac{A_r \cdot F_{\chi}}{A_{\chi} \cdot F_r} \tag{1}$$

**2-(4-Methylbenzyl)-4-phenyl-3H-benzo[b][1,5]diazepine (8aa).** Large Scale Procedure. A 25 mL round bottom microwave vial equipped with a stir bar was charged with alkynone **1** (0.858 g, 3.66 mmol), *o*-phenylenediamine **4a** (0.398 g, 3.68 mmol), and ethanol (8 mL). The vial was sealed and the reaction was irradiated in a microwave reactor at 80 °C for 70 min. The post-reaction mixture rapidly crystalized after scratching the vial with glass pipette. Filtration gave **8aa** as pale yellow crystals (0.610 g, 1.88 mmol, 51%). An additional crystallization (ethanol/hexanes, layering, 4 °C) increased the overall amount of crystalline solid to 0.760 g, 2.34 mmol, 64%. The yield could potentially be increased via column chromatography of the mother liquor. We are grateful to Mr. Wojciech Gołębiewski for this observation.

<sup>1) (</sup>a) C. A. Parker, W. T. Rees, *Analyst*, 1960, **85**, 587. (b) A. T. R. Williams, S. A. Winfield, J. N. Miller, *Analyst*, 1983, **108**, 1067.

<sup>2)</sup> R. L. Barnes, J. B. Birks, Proc. Royal Soc. London A. Mat. Phys. Sci., 1966, 291, 570.

#### RSC Advances 2016, 6, 107081. doi: 10.1039/c6ra24291j





![](_page_4_Figure_0.jpeg)

# $^{13}$ C NMR spectrum for **5ad** (C<sub>6</sub>D<sub>6</sub>)

![](_page_5_Figure_2.jpeg)

![](_page_6_Figure_1.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_1.jpeg)

 $^{13}$ C NMR spectrum for **5ag** (C<sub>6</sub>D<sub>6</sub>)

![](_page_9_Figure_2.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_13_Figure_1.jpeg)

 $^{13}$ C NMR spectrum for 8da (C<sub>6</sub>D<sub>6</sub>)

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_1.jpeg)

<sup>1</sup>H NMR spectrum for **8eb** ( $C_6D_6$ )

![](_page_16_Figure_2.jpeg)

<sup>13</sup>C NMR spectrum for **8eb** ( $C_6D_6$ )

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_1.jpeg)

# $^{13}$ C NMR spectrum for **8af** (DMSO- $d_6$ )

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_1.jpeg)

|                                                    | 2                                                        | e                                                      | Sad                                                                  | <b>5cb</b> [ref.25]                                                    |
|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
| CCDC number<br>Empirical formula<br>Formula weight | 929589<br>C <sub>18</sub> H <sub>18</sub> CINO<br>299 78 | 929587<br>C <sub>23</sub> H <sub>21</sub> NO<br>327 41 | 1477556<br>C <sub>24</sub> H <sub>24</sub> N <sub>2</sub> O<br>35645 | 950049<br>C <sub>28</sub> H <sub>31</sub> CIN <sub>2</sub> O<br>447.00 |
| Temperature<br>Wovelength                          | 1 54178 Å                                                | 100(2) K                                               | 100(2) K                                                             | 100(2) K<br>154178 Å                                                   |
| w averengur<br>Crystal system                      | Triclinic                                                | Monoclinic                                             | Monoclinic                                                           | Monoclinic                                                             |
| Space group                                        | $P\overline{1}$                                          | $P2_1$                                                 | $P2_1/c$                                                             | $P2_1/n$                                                               |
| Unit cell dimensions                               | a = 5.8282(2) Å                                          | a = 11.9333(3) Å                                       | a = 12.2036(7) Å                                                     | a = 5.7713(9) Å                                                        |
|                                                    | b = 10.3586(3)  Å<br>c = 13.2061(4)  Å                   | b = 6.7797(2)  Å<br>c = 12.1208(3)  Å                  | b = 10.1274(5)  Å<br>c = 15.5713(8)  Å                               | b = 16.573(2)  Å<br>c = 25.145(4)  Å                                   |
|                                                    | $\alpha = 77.465(2)^{\circ}$                             | $\alpha = 90.00^{\circ}$                               | $\alpha = 90.00^{\circ}$                                             | $\alpha = 90.00^{\circ}$                                               |
|                                                    | $\beta = 86.009(2)^{\circ}$                              | $\beta = 116.667(1)^{\circ}$                           | $\beta = 93.535(3)^{\circ}$                                          | $\beta = 92.354(8)^{\circ}$                                            |
|                                                    | $\gamma = 76.595(1)^{\circ}$                             | $\gamma = 90.00^{\circ}$                               | $\gamma = 90.00^{\circ}$                                             | $\gamma = 90.00^{\circ}$                                               |
| Volume                                             | 756.91(4) Å <sup>3</sup>                                 | 876.97(4) Å <sup>3</sup>                               | $1914.64(18)$ Å $^3$                                                 | 2403.0(6) Å <sup>3</sup>                                               |
| Ζ                                                  | 2                                                        | 2                                                      | 4                                                                    | 4                                                                      |
| Density (calculated)                               | 1.315 Mg/m <sup>3</sup>                                  | 1.240 Mg/m <sup>3</sup>                                | 1.237 Mg/m <sup>3</sup>                                              | $1.236 \text{ Mg/m}^3$                                                 |
| Absorption coefficient                             | 2.206 mm <sup>-1</sup>                                   | 0.583 mm <sup>-1</sup>                                 | $0.590 \text{ mm}^{-1}$                                              | 1.569 mm <sup>-1</sup>                                                 |
| F(000)                                             | 316                                                      | 348                                                    | 760                                                                  | 952                                                                    |
| Crystal size                                       | $0.46 \times 0.19 \times 0.14 \text{ mm}^3$              | $0.30 \times 0.23 \times 0.11 \text{ mm}^3$            | $0.266 \times 0.241 \times 0.192 \text{ mm}^3$                       | $0.34 \times 0.14 \times 0.06 \text{ mm}^3$                            |
| Theta range for data collection                    | 3.43 to 67.62°                                           | 4.08 to 68.02°                                         | 3.674 to 66.301°                                                     | 3.152 to 67.739°                                                       |
| Index ranges                                       | $h = -6 \rightarrow 6$                                   | $h = -14 \rightarrow 14$                               | $h = -14 \rightarrow 14$                                             | $h = -6 \rightarrow 6$                                                 |
|                                                    | $k = -12 \rightarrow 12$                                 | $k = -8 \rightarrow 7$                                 | $k = -12 \rightarrow 12$                                             | $k = -18 \rightarrow 19$                                               |
|                                                    | $l = -14 \rightarrow 15$                                 | $l = -14 \rightarrow 14$                               | $l = -18 \rightarrow 18$                                             | $l = -28 \rightarrow 30$                                               |
| Reflections collected                              | 8132                                                     | 4927                                                   | 6626                                                                 | 6787                                                                   |
| Independent reflections                            | 2658 [R(int) = 0.0301]                                   | 3024 [R(int) = 0.0319]                                 | 3493 [R(int) = 0.0472]                                               | 4215 [R(int) = 0.0744]                                                 |
| Completeness Absorption                            | 97.4%                                                    | 99.8%                                                  | 99.9%                                                                | 97.5%                                                                  |
| correction                                         | Multi-scan                                               | Multi-scan                                             | Multi-scan                                                           | Multi-scan                                                             |
| Max. and min. transmission                         | 0.7535 and 0.4289                                        | 0.9386 and 0.8426                                      |                                                                      | 0.9090 and 0.6159                                                      |
| Data / restraints / parameters                     | 2658 / 1 / 194                                           | 3024 / 2 / 230                                         | 3493 / 3 / 255                                                       | 4215 / 0 / 294                                                         |
| Goodness-of-fit on $F^2$                           | 1.059                                                    | 1.066                                                  | 1.038                                                                | 1.026                                                                  |
| Final R indices [I>2sigma(I)]                      | R1 = 0.0301, $wR2 = 0.0785$                              | R1 = 0.0299, WR2 = 0.0722                              | R1 = 0.0387, w $R2 = 0.0994$                                         | R1 = 0.0403, WR2 = 0.0874                                              |
| R indices (all data)                               | R1 = 0.0316, $wR2 = 0.0798$                              | R1 = 0.0332, WR2 = 0.0745                              | R1 = 0.0466, WR2 = 0.1042                                            | R1 = 0.0753, $wR2 = 0.0997$                                            |
| Largest diff. peak and hole                        | 0.321 and -0.194 e•A <sup>-5</sup>                       | 0.124 and -0.177 e•A <sup>-5</sup>                     | 0.221 and -0.207 e•A <sup>-3</sup>                                   | 0.195 and -0.261 e•A <sup>-5</sup>                                     |

Table S1. Crystal data and structure refinement for enaminones 2, 3, 5ad, and 5cb.

|                                                    | 2                                                        | e                                                      | Sad                                                                  | <b>5cb</b> [ref.25]                                                    |
|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
| CCDC number<br>Empirical formula<br>Formula weight | 929589<br>C <sub>18</sub> H <sub>18</sub> CINO<br>299 78 | 929587<br>C <sub>23</sub> H <sub>21</sub> NO<br>327 41 | 1477556<br>C <sub>24</sub> H <sub>24</sub> N <sub>2</sub> O<br>35645 | 950049<br>C <sub>28</sub> H <sub>31</sub> CIN <sub>2</sub> O<br>447.00 |
| Temperature<br>Wovelength                          | 1 54178 Å                                                | 100(2) K                                               | 100(2) K                                                             | 100(2) K<br>154178 Å                                                   |
| w averengur<br>Crystal system                      | Triclinic                                                | Monoclinic                                             | Monoclinic                                                           | Monoclinic                                                             |
| Space group                                        | $P\overline{1}$                                          | $P2_1$                                                 | $P2_1/c$                                                             | $P2_1/n$                                                               |
| Unit cell dimensions                               | a = 5.8282(2) Å                                          | a = 11.9333(3) Å                                       | a = 12.2036(7) Å                                                     | a = 5.7713(9) Å                                                        |
|                                                    | b = 10.3586(3)  Å<br>c = 13.2061(4)  Å                   | b = 6.7797(2)  Å<br>c = 12.1208(3)  Å                  | b = 10.1274(5)  Å<br>c = 15.5713(8)  Å                               | b = 16.573(2)  Å<br>c = 25.145(4)  Å                                   |
|                                                    | $\alpha = 77.465(2)^{\circ}$                             | $\alpha = 90.00^{\circ}$                               | $\alpha = 90.00^{\circ}$                                             | $\alpha = 90.00^{\circ}$                                               |
|                                                    | $\beta = 86.009(2)^{\circ}$                              | $\beta = 116.667(1)^{\circ}$                           | $\beta = 93.535(3)^{\circ}$                                          | $\beta = 92.354(8)^{\circ}$                                            |
|                                                    | $\gamma = 76.595(1)^{\circ}$                             | $\gamma = 90.00^{\circ}$                               | $\gamma = 90.00^{\circ}$                                             | $\gamma = 90.00^{\circ}$                                               |
| Volume                                             | 756.91(4) Å <sup>3</sup>                                 | 876.97(4) Å <sup>3</sup>                               | $1914.64(18)$ Å $^3$                                                 | 2403.0(6) Å <sup>3</sup>                                               |
| Ζ                                                  | 2                                                        | 2                                                      | 4                                                                    | 4                                                                      |
| Density (calculated)                               | 1.315 Mg/m <sup>3</sup>                                  | 1.240 Mg/m <sup>3</sup>                                | 1.237 Mg/m <sup>3</sup>                                              | $1.236 \text{ Mg/m}^3$                                                 |
| Absorption coefficient                             | 2.206 mm <sup>-1</sup>                                   | 0.583 mm <sup>-1</sup>                                 | $0.590 \text{ mm}^{-1}$                                              | 1.569 mm <sup>-1</sup>                                                 |
| F(000)                                             | 316                                                      | 348                                                    | 760                                                                  | 952                                                                    |
| Crystal size                                       | $0.46 \times 0.19 \times 0.14 \text{ mm}^3$              | $0.30 \times 0.23 \times 0.11 \text{ mm}^3$            | $0.266 \times 0.241 \times 0.192 \text{ mm}^3$                       | $0.34 \times 0.14 \times 0.06 \text{ mm}^3$                            |
| Theta range for data collection                    | 3.43 to 67.62°                                           | 4.08 to 68.02°                                         | 3.674 to 66.301°                                                     | 3.152 to 67.739°                                                       |
| Index ranges                                       | $h = -6 \rightarrow 6$                                   | $h = -14 \rightarrow 14$                               | $h = -14 \rightarrow 14$                                             | $h = -6 \rightarrow 6$                                                 |
|                                                    | $k = -12 \rightarrow 12$                                 | $k = -8 \rightarrow 7$                                 | $k = -12 \rightarrow 12$                                             | $k = -18 \rightarrow 19$                                               |
|                                                    | $l = -14 \rightarrow 15$                                 | $l = -14 \rightarrow 14$                               | $l = -18 \rightarrow 18$                                             | $l = -28 \rightarrow 30$                                               |
| Reflections collected                              | 8132                                                     | 4927                                                   | 6626                                                                 | 6787                                                                   |
| Independent reflections                            | 2658 [R(int) = 0.0301]                                   | 3024 [R(int) = 0.0319]                                 | 3493 [R(int) = 0.0472]                                               | 4215 [R(int) = 0.0744]                                                 |
| Completeness Absorption                            | 97.4%                                                    | 99.8%                                                  | 99.9%                                                                | 97.5%                                                                  |
| correction                                         | Multi-scan                                               | Multi-scan                                             | Multi-scan                                                           | Multi-scan                                                             |
| Max. and min. transmission                         | 0.7535 and 0.4289                                        | 0.9386 and 0.8426                                      |                                                                      | 0.9090 and 0.6159                                                      |
| Data / restraints / parameters                     | 2658 / 1 / 194                                           | 3024 / 2 / 230                                         | 3493 / 3 / 255                                                       | 4215 / 0 / 294                                                         |
| Goodness-of-fit on $F^2$                           | 1.059                                                    | 1.066                                                  | 1.038                                                                | 1.026                                                                  |
| Final R indices [I>2sigma(I)]                      | R1 = 0.0301, $wR2 = 0.0785$                              | R1 = 0.0299, WR2 = 0.0722                              | R1 = 0.0387, w $R2 = 0.0994$                                         | R1 = 0.0403, WR2 = 0.0874                                              |
| R indices (all data)                               | R1 = 0.0316, $wR2 = 0.0798$                              | R1 = 0.0332, WR2 = 0.0745                              | R1 = 0.0466, WR2 = 0.1042                                            | R1 = 0.0753, $wR2 = 0.0997$                                            |
| Largest diff. peak and hole                        | 0.321 and -0.194 e•A <sup>-5</sup>                       | 0.124 and -0.177 e•A <sup>-5</sup>                     | 0.221 and -0.207 e•A <sup>-3</sup>                                   | 0.195 and -0.261 e•A <sup>-5</sup>                                     |

Table S1. Crystal data and structure refinement for enaminones 2, 3, 5ad, and 5cb.

# Deuterated Solvent (MeOD) Experimental Data and Product Ratios

![](_page_35_Figure_1.jpeg)

Figure S1. Reaction of ketone 1a and diamine 4a to enaminone 5aa

Figure S2. Reaction of ketone 1a and diamine 4a to diazepine 8aa

![](_page_35_Figure_4.jpeg)

Figure S3. Cyclization of non-deuterated enaminone 5aa to diazepine 8aa

![](_page_35_Figure_6.jpeg)

Post-reaction ratios of deuterated products

| Reaction      | $d_{0}\left(\% ight)$ | $d_{1}(\%)$ | $d_{2}(\%)$ | $d_{3}(\%)$ | $d_{4}(\%)$ | $d_{5}(\%)$ |
|---------------|-----------------------|-------------|-------------|-------------|-------------|-------------|
| 1a + 4a → 5aa | 1.6                   | 8.8         | 34.1        | 55.0        | 0.2         | 0.5         |
| 1a + 4a → 8aa | 6.2                   | 25.6        | 46.9        | 18.8        | 2.4         | 0.0         |
| 5aa → 8aa     | 5.0                   | 19.2        | 34.0        | 29.9        | 12.0        | 0.0         |