Electronic Supplementary Information (ESI)

The facile preparation of carbon coated Bi₂O₃ nanoparticles/nitrogen-doped reduced graphene oxide hybrid as a high-performance anode material for lithium-

ion batteries

Wei Fang,^a Naiqing Zhang,^{*bc} Lishuang Fan^{*c} and Kening Sun^c

^aSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, PR China.

^bState Key laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China. E-mail: znqmww@163.com.

^cAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin,

150090, PR China. Email: fandysunning@126.com.

Fig. S1 TGA curves of (a) PTA and (b) GO.

Fig. S2 High-resolution XPS spectra of C 1s of (a) GO and (b) Bi₂O₃@C@N-G.

Fig. S3 Raman spectrum of Bi₂O₃@C@N-G.

Fig. S4 HAADF-STEM image and elemental mapping results of Bi₂O₃@C@N-G.

Fig. S5 Nitrogen adsorption and desorption isotherms of Bi₂O₃@C@N-G.

Fig. S6 The characterization of $Bi_2O_3@C@N$ -RGO. (a) XRD pattern. (b) SEM image (inset: HRTEM image). (c) Survey XPS spectrum. (d) Nitrogen adsorption and desorption isotherms. In XRD pattern, all the diffraction peaks could be indexed to tetragonal Bi_2O_3 phase. HRTEM image shows that Bi_2O_3 nanoparticle is uniformly and continuously coated by a thin carbon layer with a thickness of about 4 nm, as indicated by the red dashed line. The wide XPS spectrum of $Bi_2O_3@C@N$ -RGO confirms the existence of Bi, O, C and N elements. Carbon content in $Bi_2O_3@C@N$ -RGO is calculated to be around 13.8 wt% by soaking the hybrid in HCl solution and weighing the residue.

Fig. S7 The characterization of $Bi_2O_3@N$ -RGO. (a) XRD pattern. (b) Survey XPS spectrum. (c) SEM image. (d) Locally enlarged SEM. (e) HRTEM image. (f) Nitrogen adsorption and desorption isotherms. XRD pattern shows that all the diffraction peaks could be indexed to tetragonal Bi_2O_3 phase. Wide XPS spectrum of $Bi_2O_3@N$ -RGO confirms the existence of Bi, O, C and N elements. HRTEM image shows that Bi_2O_3 nanoparticle isn't coated by a thin carbon layer. Carbon content in $Bi_2O_3@N$ -RGO is calculated to be around 7.0 wt% by soaking the hybrid in HCl solution and weighing the residue.

Fig. S8 The characterization of $Bi_2O_3@C$. (a) XRD pattern. (b) SEM image. (c) Nitrogen adsorption and desorption isotherms. XRD pattern shows that all the diffraction peaks could be indexed to tetragonal Bi_2O_3 phase.

Sample	Cycle ability	Rate capability	Reference
Bi ₂ O ₃ -Bi ₂ S ₃	433 mAh g ⁻¹ after 100	295 mAh g ⁻¹ at 6 A g ⁻¹	Sci. Rep., 2014, 5, 9307
	cycles at 600 mA g ⁻¹		
Bi ₂ O ₃ /Ni	782 mAh g ⁻¹ after 40	668 mAh g ⁻¹ at 800 mA g ⁻¹	J. Mater. Chem. A, 2013,
	cycles at 100 mA g ⁻¹		1, 12123-12127
Bi ₂ O ₃ @C@N-G	391 mAh g ⁻¹ after 250	326 mAh g ⁻¹ at 4800 mA	This work
	cycles at 3000 mA g ⁻¹	g-1	

Table S1 Comparison of lithium storage between Bi₂O₃@C@N-G and previous Bi₂O₃-based material.

Fig. S9 (a) XRD profiles of $Bi_2O_3@C@N-G$ electrode after and before 250 cycles at 3 A g⁻¹. (b) SEM and (c) TEM images of $Bi_2O_3@C@N-G$ after 250 cycles at 3 A g⁻¹.