SUPPORTING INFORMATION

Successful synthesis of blocked polyisocyanates using easily cleavable

phenols as blocking agents and their deblocking and cure studies.

S. Kalaimani, B. Mohamad Ali and A. Sultan Nasar* Department of Polymer Science, University of Madras, Guindy Campus, Chennai-600025, India. E-mail: drasultannasar@yahoo.com; drasultannasar@unom.ac.in;

Fig. S1. ¹H-NMR spectrum of phenol-blocked polyisocyanate (Solvent:CDCl₃).

Fig. S2. ¹H-NMR spectrum of 2,4-dichlorophenol-blocked polyisocyanate (Solvent:CDCl₃).

Fig. S3. ¹H-NMR spectrum of methyl 3-chloro-4-hydroxybenzoate-blocked polyisocyanate (Solvent:CDCl₃).

Fig. S4. ¹H-NMR spectrum of 2-chloro-4-nitrophenol-blocked polyisocyanate (Solvent:CDCl₃).

Fig. S5. FT-IR spectra recorded for different time intervals at isothermal conditions for the blocking reaction of polyisocyanate with phenol; (a) $40 \text{ }^{\circ}\text{C}$ (b) $50 \text{ }^{\circ}\text{C}$ and (c) $60 \text{ }^{\circ}\text{C}$.

Fig. S6. FT-IR spectra recorded for different time intervals at isothermal conditions for the blocking reaction of polyisocyanate with methyl 3-chloro-4-hydroxybenzoate; (a) $40 \text{ }^{\circ}\text{C}$ (b) $50 \text{ }^{\circ}\text{C}$ and (c) $60 \text{ }^{\circ}\text{C}$.

Fig. S7. FT-IR spectra recorded for different time intervals at isothermal conditions for the blocking reaction of polyisocyanate with 2-chloro-4-nitrophenol; (a) 40 $^{\circ}$ C (b) 50 $^{\circ}$ C and (c) 60 $^{\circ}$ C.

Fig. S8. Amine-catalyzed second-order kinetic plots of blocking reaction of polyisocyanate with phenol.

Fig. S9. Amine-catalyzed second-order kinetic plots of blocking reaction of polyisocyanate with 3-chloro-4-hydroxybenzoate.

Fig. S10. Amine-catalyzed second-order kinetic plots of blocking reaction of polyisocyanate with 2-chloro-4-nitrophenol.

Fig. S11. FT-IR spectra of phenol -blocked polyisocyanate recorded at (a) different temperatures. (b) Zoomed range of isocyanate absorption region.

Fig. S12. FT-IR spectra of methyl 3-chloro-4-hydroxybenzoate-blocked polyisocyanate recorded at (a) different temperatures. (b) Zoomed range of isocyanate absorption region.

Fig. S13. FT-IR spectra of 2-chloro-4-nitrophenol -blocked polyisocyanate recorded at (a) different temperatures. (b) Zoomed range of isocyanate absorption region.

Fig. S14. FT-IR spectra recorded for different time intervals at isothermal conditions for the deblocking reaction of phenol -blocked polyisocyanate: (a) $110 \text{ }^{\circ}\text{C}$ (b) $120 \text{ }^{\circ}\text{C}$ and (c) $130 \text{ }^{\circ}\text{C}$.

Fig. S15. FT-IR spectra recorded for different time intervals at isothermal conditions for the deblocking reaction of methyl 3-chloro-4-hydroxybenzoate -blocked polyisocyanate: (a) 90 °C (b) 100 °C and (c) 110 °C.

Fig. S16. FT-IR spectra recorded for different time intervals at isothermal conditions for the deblocking reaction of 2-chloro-4-nitrophenol -blocked polyisocyanate: (a) 90 $^{\circ}$ C (b) 100 $^{\circ}$ C and (c) 110 $^{\circ}$ C.

Fig. S17. Aminecatalyzed first-order kinetic plots of deblocking reaction of phenol-blocked

Fig. S18. Amine-catalyzed first-order kinetic plots of deblocking reaction of 3-chloro-4-hydroxybenzoate -blocked polyisocyanate.

Fig. S19.. Amine-catalyzed first-order kinetic plots of deblocking reaction of 2-chloro-4-nitrophenol - blocked polyisocyanate.