Stereoelectronic effects of the glycosidic linkage on the conformational preference of D-Sucrose

Thiago de Castro Rozada, Rodrigo Meneghetti Pontes, Roberto Rittner, and Ernani Abicht Basso

1 Electronic Supplementary Information

List of Tables

S1	Optimized conformations of D-Sucrose (energy with ZPE correction) at M06-	
	2X/6-31++G(d,p) level in vacuum	2
S2	Optimized conformations of D-Sucrose (energy with ZPE correction) at M06- $$	
	2X/6-31++G(d,p) level in water (IEF-PCM/bondi)	3
S3	Orbital interactions (kcal mol^{-1}) for the conformations of D-Sucrose calculated	
	at M06-2X/6-31++G(d,p) level $\ldots \ldots \ldots$	4
S4	Cartesian coordinates of S1-gt-tg-gg optimized at M06-2X/6-31++G(d,p) level	
	in water (IEF-PCM/bondi) \ldots	9
S5	Cartesian coordinates of S2-gt-gt-gg optimized at M06-2X/6-31++G(d,p) level	
	in water (IEF-PCM/bondi) \ldots	10
S6	Cartesian coordinates of S3-gt-tg-gt optimized at M06-2X/6-31++G(d,p) level	
	in water (IEF-PCM/bondi) \ldots	11
S7	Cartesian coordinates of S1-gg-tg-gg optimized at M06-2X/6-31++G(d,p) level	
	in water (IEF-PCM/bondi)	12
$\mathbf{S8}$	Cartesian coordinates of S1-tg-tg-gg optimized at M06-2X/6-31++G(d,p) level	
	in water (IEF-PCM/bondi)	13
$\mathbf{S9}$	Cartesian coordinates of S1-gt-tg-gg ccw optimized at M06-2X/6-31++G(d,p) level	
	in water (IEF-PCM/bondi)	14

Entr	Conformer	Conformer Dihedral Angle					Dipole	ΔE
	Comormor	O5-C1-O1-C8	C1-O1-C8-O8	O5-C5-C6-O6	O8-C8-C7-O7	O8-C11-C12-O12	Moment (D)	(kcal.mol^{-1})
1	S1-gg-tg-gg	111.9	-52.5	-66.3	-176.6	-62.1	2.042	0.38
2	S1-gt-tg-gg	111.5	-46.0	88.4	-179.4	-59.2	3.135	0.58
3	S1-tg-tg-gg	111.4	-52.7	-173.4	-177.0	-61.7	3.016	0.00
4	S1-gt-tg-gg ^{ccw}	107.9	-36.8	78.0	171.4	-66.2	4.085	2.27
5	S2-gg-gt-tg	86.0	-168.4	-64.6	53.2	171.5	1.781	10.09
6	S2-gg-gt-gg	100.0	-162.5	-65.3	66.2	-59.4	2.715	5.67
7	S2-gg-tg-gg	97.2	-170.0	-65.6	176.8	-60.4	2.496	7.51
8	S2-gt-gt-gg	95.0	-161.4	59.7	61.6	-59.3	3.974	7.16
9	S2-tg-gt-gg	85.5	-169.1	-179.5	53.0	171.5	1.999	9.74
10	S2-tg-gt-gg	99.9	-162.0	-175.3	66.7	-59.6	3.937	5.73
11	S3-gt-tg-gt	104.9	-41.3	-62.8	173.7	172.4	4.122	7.73
12	S3-tg-tg-tg	104.8	-40.4	-178.6	173.2	172.1	4.520	8.21
13	S4-gg-gt-tg	65.9	-78.1	-63.3	47.9	173.4	3.168	10.92
14	S4-gg-gt-tg	68.7	-83.4	-64.1	52.6	172.8	1.655	9.55
15	S4-gg-gt-gt	63.2	-79.8	-63.2	50.4	69.7	3.417	10.38
16	S4-gt-gg-gt	67.3	-80.1	66.8	-74.8	74.2	2.837	9.20
17	S4-gt-gt-tg	68.3	-72.8	66.6	45.8	174.3	3.461	11.21
18	S4-tg-gt-tg	65.6	-79.0	-178.0	48.9	173.2	3.766	11.46
19	S4-tg-gt-gt	64.5	-73.7	175.0	47.8	63.4	5.747	7.84
20	S5-gg-tg-gg	111.4	60.8	-65.4	-176.2	-53.9	2.687	7.90
21	S6-gg-tg-tg	112.5	-48.6	-63.5	-178.4	176.0	2.440	7.72
22	S7-gg-tg-gg	78.5	-179.3	-66.4	-167.4	-74.5	3.400	8.19

Table S1. Optimized conformations of D-Sucrose (energy with ZPE correction) at M06-2X/6-31++G(d,p) level in vacuum

Entr	Conformer			Dihedral Ang	le		Dipole	ΔE
1211011	Comormor	O5-C1-O1-C8	C1-O1-C8-O8	O5-C5-C6-O6	O8-C8-C7-O7	O8-C11-C12-O12	Moment (D)	(kcal.mol^{-1})
1	S1-gg-tg-gg	112.0	-52.5	-61.5	-176.9	-63.6	2.816	0.08
2	S1-gt-tg-gg	110.8	-44.9	83.6	179.3	-58.8	4.984	0.00
3	S1-tg-tg-gg	111.6	-53.3	179.6	-177.1	-62.9	4.315	1.01
4	S1-gt-tg-gg ^{ccw}	107.9	-40.3	81.7	171.5	-60.7	7.113	0.75
5	S2-gg-gt-tg	92.5	-171.5	-61.6	52.4	172.7	1.808	6.95
6	S2-gg-gt-gg	97.2	-159.3	-62.9	62.0	-61.0	4.415	2.07
7	S2-gg-tg-gg	90.7	-165.4	-61.7	-178.0	-60.3	3.200	5.11
8	S2-gt-gt-gg	93.8	-160.1	61.9	57.1	-61.1	6.501	1.79
9	S2-tg-gt-gg	93.2	-171.0	-178.8	51.7	-78.1	2.564	7.58
10	S2-tg-gt-gg	97.1	-158.5	179.6	61.6	-61.0	6.103	3.10
11	S3-gt-tg-gt	95.5	-61.9	53.4	173.9	68.7	7.217	3.21
12	S3-tg-tg-tg	103.1	-44.6	-178.4	173.4	174.9	6.496	4.49
13	S4-gg-gt-tg	69.2	-78.9	-62.0	44.9	176.6	4.226	7.67
14	S4-gg-gt-tg	70.5	-78.4	-61.5	46.2	172.3	2.626	8.34
15	S4-gg-gt-gt	68.8	-78.3	-62.0	44.7	67.8	4.805	6.95
16	S4-gt-gg-gt	64.2	-73.0	63.9	-53.1	67.9	3.900	5.74
17	S4-gt-gt-tg	66.1	-75.6	65.1	43.8	175.8	4.730	7.57
18	S4-tg-gt-tg	68.8	-77.0	179.9	44.0	175.7	4.973	8.50
19	S4-tg-gt-gt	67.5	-73.8	172.5	43.4	63.6	7.714	5.39
20	S5-gg-tg-gg	107.1	64.7	-62.7	-150.1	-56.3	3.407	4.15
21	S6-gg-tg-tg	90.4	45.4	-61.2	-175.1	175.0	3.076	8.13
22	S7-gg-tg-gg	74.3	-168.1	-62.1	-167.9	-63.3	4.786	4.89

 $\textbf{Table S2.} \ Optimized \ conformations \ of \ D-Sucrose \ (energy \ with \ ZPE \ correction) \ at \ M06-2X/6-31++G(d,p) \ level \ in \ water \ (IEF-PCM/bondi)$

Entry	Orbital Interactions	S1-gt-tg-gg	S2-gt-gt-gg	S3-gt-tg-gt	S1-gg-tg-gg	S1-tg-tg-gg	S1-gt-tg-gg ^{ccw}
1	$\eta_{O5} \rightarrow \sigma^*_{O7-HO7}$	-	1.53	-	-	-	-
2	$\eta_{O5} \rightarrow \sigma^*_{O7-HO7}$	-	3.57	-	-	-	-
3	$\eta_{O5} \rightarrow \sigma^*_{O12-HO12}$	3.96	-	-	3.12	2.82	4.69
4	$\eta_{O5} \rightarrow \sigma^*_{O12-HO12}$	4.46	-	-	5.58	5.53	4.48
5	$\eta_{O5} \rightarrow \sigma^*_{O6-HO6}$	-	-	0.51	-	-	-
6	$\eta_{O1} \rightarrow \sigma^*_{O2-HO2}$	-	-	-	-	-	1.21
7	$\eta_{O1} \rightarrow \sigma^*_{O9-HO9}$	-	-	3.84	-	-	-
8	$\eta_{O1} \to \sigma^*_{O12-HO12}$	-	3.07	-	-	-	-
9	$\eta_{O2} \rightarrow \sigma^*_{O7-HO7}$	3.32	-	4.74	2.83	2.60	-
10	$\eta_{O2} \rightarrow \sigma^*_{O7-HO7}$	7.04	-	7.75	9.64	10.25	-
11	$\eta_{O2} \to \sigma^*_{O9-HO9}$	-	3.17	-	-	-	-
12	$\eta_{O2} \to \sigma^*_{O9-HO9}$	-	9.57	-	-	-	-
13	$\eta_{O3} \rightarrow \sigma^*_{O2-HO2}$	-	-	-	0.51	0.75	-
14	$\eta_{O3} \rightarrow \sigma^*_{O4-HO4}$	-	-	-	-	-	0.70
15	$\eta_{O4} \rightarrow \sigma^*_{O3-HO3}$	0.63	0.71	0.70	0.52	-	-
16	$\eta_{O6} \to \sigma^*_{O4-HO4}$	-	-	-	-	2.19	-
17	$\eta_{O6} \to \sigma^*_{O4-HO4}$	-	-	-	-	6.97	-
18	$\eta_{O6} \rightarrow \sigma^*_{O7-HO7}$	-	0.91	-	-	-	-
19	$\eta_{O6} \rightarrow \sigma^*_{O7-HO7}$	-	3.89	-	-	-	-
20	$\eta_{O6} \to \sigma^*_{O12-HO12}$	-	-	2.96	-	-	-
21	$\eta_{O6} \to \sigma^*_{O12-HO12}$	-	-	13.54	-	-	-
22	$\eta_{O8} \to \sigma^*_{O12-HO12}$	1.08	0.87	-	0.69	0.75	0.93

Table S3. Orbital interactions (kcal mol^{-1}) for the conformations of D-Sucrose calculated at M06-2X/6-31++G(d,p) level

4

Entry	Orbital Interactions	S1-gt-tg-gg	S2-gt-gt-gg	S3-gt-tg-gt	S1-gg-tg-gg	S1-tg-tg-gg	S1-gt-tg-gg ccw
23	$\eta_{O7} \rightarrow \sigma^*_{O2-HO2}$	-	-	-	-	-	2.40
24	$\eta_{O7} \to \sigma^*_{O2-HO2}$	-	-	-	-	-	7.68
25	$\eta_{O20} \rightarrow \sigma^*_{O9-HO9}$	-	-	-	2.38	2.29	-
26	$\eta_{O12} \rightarrow \sigma^*_{O6-HO6}$	4.71	-	-	-	-	4.43
27	$\eta_{O12} \rightarrow \sigma^*_{O6-HO6}$	12.36	-	-	-	-	12.21
28	$\sigma_{C1-O1} \to \sigma^*_{C2-H2}$	0.82	0.85	0.95	0.85	0.87	0.83
29	$\sigma_{C1-O1} \to \sigma^*_{C8-C9}$	1.11	-	1.18	1.18	1.16	1.17
30	$\sigma_{C1-O1} \rightarrow \sigma^*_{C8-O8}$	-	1.41	-	-	-	-
31	$\sigma_{C2-H2} \to \sigma^*_{C1-O1}$	4.58	4.54	-	4.52	4.51	4.66
32	$\sigma_{C8-C9} \to \sigma^*_{C1-O1}$	3.18	0.56	4.22	3.22	3.26	2.89
33	$\sigma_{C8-O8} \rightarrow \sigma^*_{C1-O1}$	-	1.67	-	-	-	-
34	$\eta_{O5} \to \sigma^*_{C1-O1}$	2.99	2.21	1.54	2.80	2.97	3.14
35	$\eta_{O5} \rightarrow \sigma^*_{C1-O1}$	11.61	13.91	15.54	12.15	11.92	11.98
36	$\eta_{O8} \to \sigma^*_{C1-O1}$	-	0.63	-	-	-	-
37	$\sigma_{C8-O1} \rightarrow \sigma^*_{C1-C2}$	0.72	0.97	0.72	0.66	0.66	0.61
38	$\sigma_{C8-O1} \rightarrow \sigma^*_{C1-O5}$	-	-	-	0.50	-	-
39	$\sigma_{C8-O1} \to \sigma^*_{C7-H7a}$	-	0.64	-	-	-	-
40	$\sigma_{C8-O1} \to \sigma^*_{C7-H7b}$	0.80	-	0.58	0.74	0.74	0.81
41	$\sigma_{C8-O1} \rightarrow \sigma^*_{C8-O8}$	-	0.54	-	-	-	-
42	$\sigma_{C8-O1} \rightarrow \sigma^*_{C9-H9}$	0.88	0.86	-	0.83	0.84	1.00
43	$\sigma_{C1-C2} \to \sigma^*_{C8-O1}$	1.84	2.49	2.50	1.74	1.78	2.17
44	$\sigma_{C1-O5} \rightarrow \sigma^*_{C8-O1}$	0.57	-	-	0.56	0.56	0.56
45	$\sigma_{C7-H7a} \to \sigma^*_{C8-O1}$	-	6.88	-	-	-	-

Table S3 – continuation of the previous page

СЛ

Entry	Orbital Interactions	S1-gt-tg-gg	S2-gt-gt-gg	S3-gt-tg-gt	S1-gg-tg-gg	S1-tg-tg-gg	S1-gt-tg-gg ccw
46	$\sigma_{C7-H7b} \to \sigma^*_{C8-O1}$	5.60	-	6.09	5.85	5.85	5.32
47	$\sigma_{C9-H9} \to \sigma^*_{C8-O1}$	4.49	4.97	-	4.65	4.60	4.34
48	$\sigma_{C9-C10} \to \sigma^*_{C8-O1}$	-	-	2.24	-	-	-
49	$\sigma_{C11-O8} \to \sigma^*_{C8-O1}$	0.60	-	1.00	-	-	0.64
50	$\eta_{O8} \to \sigma^*_{C8-O1}$	19.08	19.94	17.32	19.66	19.65	18.90
51	$\eta_{O1} \rightarrow \sigma^*_{C1-C2}$	0.67	1.73	1.17	0.66	0.70	0.68
52	$\eta_{O1} \rightarrow \sigma^*_{C1-O5}$	0.77	-	-	0.72	0.72	0.71
53	$\eta_{O1} \rightarrow \sigma^*_{C1-H1}$	4.59	3.38	4.26	4.55	4.59	4.45
54	$\eta_{O1} \to \sigma^*_{C2-H2}$	-	-	-	-	-	-
55	$\eta_{O1} \rightarrow \sigma^*_{C7-C8}$	0.68	3.91	2.03	1.09	1.14	0.57
56	$\eta_{O1} \to \sigma^*_{C7-H7b}$	-	-	-	-	-	-
57	$\eta_{O1} \to \sigma^*_{C8-C9}$	1.73	-	2.10	1.81	1.84	1.80
58	$\eta_{O1} \to \sigma^*_{C8-O8}$	4.71	4.04	2.04	3.66	3.59	5.17
59	$\eta_{O1} \to \sigma^*_{C9-H9}$	-	-	-	-	-	-
60	$\eta_{O1} \rightarrow \sigma^*_{C1-C2}$	4.60	1.72	2.22	4.59	4.50	3.72
61	$\eta_{O1} \to \sigma^*_{C1-O5}$	14.76	17.19	16.32	14.57	14.76	14.66
62	$\eta_{O1} \to \sigma^*_{C1-H1}$	-	2.34	1.13	-	-	-
63	$\eta_{O1} \to \sigma^*_{C2-H2}$	0.57	-	-	0.62	0.61	0.59
64	$\eta_{O1} \to \sigma^*_{C7-C8}$	7.44	2.53	5.78	7.18	7.14	7.93
65	$\eta_{O1} \to \sigma^*_{C7-H7b}$	0.68	-	-	0.58	0.57	0.68
66	$\eta_{O1} \to \sigma^*_{C8-C9}$	0.56	7.51	-	-	-	0.89
67	$\eta_{O1} \to \sigma^*_{C8-O8}$	8.87	2.60	13.97	10.77	11.03	7.84
68	$\sigma_{C1-H1} \to \sigma^*_{C7-H7a}$	-	-	0.89	-	-	-

Table S3 – continuation of the previous page

Entry	Orbital Interactions	S1-gt-tg-gg	S2-gt-gt-gg	S3-gt-tg-gt	S1-gg-tg-gg	S1-tg-tg-gg	S1-gt-tg-gg ^{ccw}
69	$\sigma_{C12-H12a} \to \sigma^*_{C5-H5}$	-	-	0.52	-	-	-
70	$\eta_{O9} \rightarrow \sigma^*_{C1-H1}$	-	0.60	-	-	-	-
71	$\eta_{O9} \to \sigma^*_{C12-H12a}$	-	-	0.99	-	-	-
72	$\eta_{O12} \to \sigma^*_{C10-H10}$	-	0.66	-	0.64	0.62	-
73	$\sigma_{C6-O6} \to \sigma^*_{C5-O5}$	-	-	-	-	2.12	-
74	$\sigma_{C6-O6} \rightarrow \sigma^*_{C4-C5}$	1.26	1.59	1.36	-	-	1.28
75	$\sigma_{C6-O6} \to \sigma^*_{C5-H5}$	-	-	-	1.01	-	-
76	$\sigma_{C5-O5} \rightarrow \sigma^*_{C6-O6}$	-	-	-	-	2.14	-
77	$\sigma_{C4-C5} \to \sigma^*_{C6-O6}$	2.27	2.42	2.60	-	-	2.27
78	$\sigma_{C5-H5} \to \sigma^*_{C6-O6}$	1.33	0.79	-	4.67	-	1.24
79	$\sigma_{C6-H6a} \to \sigma^*_{C4-C5}$	-	-	-	3.30	-	-
80	$\sigma_{C6-H6a} \to \sigma^*_{C5-O5}$	4.54	4.37	4.32	0.72	0.57	4.80
81	$\sigma_{C6-H6a} \to \sigma^*_{C5-H5}$	-	-	-	-	2.52	-
82	$\sigma_{C6-H6a} \to \sigma^*_{O6-HO6}$	2.35	-	2.29	-	-	2.48
83	$\sigma_{C6-H6b} \to \sigma^*_{C4-C5}$	-	-	-	-	2.83	-
84	$\sigma_{C6-H6b} \to \sigma^*_{C5-O5}$	1.64	1.08	-	4.95	0.57	1.57
85	$\sigma_{C6-H6b} \to \sigma^*_{C5-H5}$	2.49	2.79	2.73	-	-	2.61
86	$\sigma_{C6-H6b} \to \sigma^*_{O6-HO6}$	-	2.29	-	2.60	-	-
87	$\sigma_{C5-O1} \to \sigma^*_{C6-H6a}$	0.74	1.03	0.91	-	-	0.69
88	$\sigma_{C4-C5} \to \sigma^*_{C6-H6a}$	-	-	-	1.10	-	-
89	$\sigma_{C5-H5} \to \sigma^*_{C6-H6a}$	-	-	-	-	2.14	-
90	$\sigma_{C5-O5} \rightarrow \sigma^*_{C6-H6b}$	-	-	-	0.95	-	-
91	$\sigma_{C4-C5} \to \sigma^*_{C6-H6b}$	-	-	-	-	1.07	-

Table S3 – continuation of the previous page

-1

Entry	Orbital Interactions	S1-gt-tg-gg	S2-gt-gt-gg	S3-gt-tg-gt	S1-gg-tg-gg	S1-tg-tg-gg	S1-gt-tg-gg ^{ccw}
92	$\sigma_{C5-H5} \to \sigma^*_{C6-H6b}$	2.03	2.31	2.27	-	-	2.06
93	$\eta_{O5} \to \sigma^*_{O6-HO6}$	-	-	0.51	-	-	-
94	$\eta_{O4} \rightarrow \sigma^*_{O6-HO6}$	-	-	-	-	-	-
95	$\eta_{O4} \to \sigma^*_{O6-HO6}$	-	-	-	-	-	-
96	Σ	165.71	157.24	158.33	155.92	159.29	166.44

Table S3 – continuation of the previous page

En ZP	ergy (Hartree) =) = -1297.5808 = 0.3740493	3111
<u>C</u>	0 726/8600	-0 44280200	-1 04824300
C	2 07293000	-0.44269200 -1.15356000	-0.02007400
C	2.01255000	-0.63389200	-0.52051400 0.27740700
C	2.04100000	0.88449900	0.27140100
C	2.55525000	1 47833300	0.22080500
C	1.54980400 1.53139700	2 99/28/00	0.11349500
C	1.33132700	2.33428400 2.70473700	0.02349400 0.72558300
C	1.32898000	-2.70475700	-0.723000 0.24361400
C	1.39820300 2.21453400	-1.20311800 1.05071000	-0.24301400 1 0/108000
C	2.21403400	-1.03071000	1.04108000
C	2.02344200	0.40090400	0.88525000
C	2.90185900	0.43448200	-0.00257900
	2.84302000	1.79420800	-1.29814000
0	0.91911500	0.95517000	-1.00022200
0	0.08844300	-0.79190700	0.04005000
0	1.81416600	-2.54321300	-0.81490100
0	4.11938300	-1.25768300	0.25137700
0	3.60480900	1.29258100	1.41695800
0	0.30727100	3.56172800	0.45996600
0	2.03995200	-0.47208400	-1.21700500
0	0.67031100	-3.49565300	0.24720200
0	1.51837100	-1.27918900	2.23904900
0	3.75585800	0.79027400	1.63437600
0	1.53247700	2.32933600	-1.23396900
Н	0.25036000	-0.69307200	-1.99945600
Н	2.64892600	-0.94379600	-1.83211500
Η	2.31259200	-0.90720300	1.19931100
Η	3.54960400	1.17629500	-0.65827500
Η	0.97210100	1.17553600	1.00381900
Η	2.30581500	3.39977800	0.67859600
Η	1.76259300	3.28756400	-1.00971000
Η	2.66121200	-3.00762800	-0.75138500
Η	4.59910600	-0.99350700	1.04905100
Η	4.18664000	2.04072600	1.23424000
Η	0.42291900	3.21776800	-0.08716600
Η	0.81412900	-2.74956500	-1.69374700
Η	2.34367100	-3.09022900	-0.84940400
Η	3.11871300	-1.67436800	0.98301700
Η	1.76342200	1.05508800	1.11111700
Η	3.98517900	0.08033500	-0.73887900
Η	3.51532800	2.50789100	-0.81388900
Η	3.15392000	1.67836700	-2.34329200
Η	0.27506600	-3.26916300	0.18738700
Η	1.21419400	-2.19945300	2.23523400
Η	3.48462500	0.95188300	2.54756400
Н	0.88304600	1.64658800	-1.47853600

Table S4. Cartesian coordinates of S1-gt-tg-gg optimized at M06-2X/6-31++G(d,p) level in water (IEF-PCM/bondi)

Energy (Hartree) = -1297.5779288ZPE (Hartree) = 0.3740220С 0.63314300-1.21862700-0.03904600С 1.07367400 -1.50175600-1.23359400С 1.86056800 -1.842005000.02189400 С 3.00048300 -0.846787000.21341400С 2.43618400 0.575937000.21728900С 3.49440100 1.65789000 0.30085300 С 0.99409200 2.33888400 -1.03285200С 1.41171500 1.02890900 -0.37498900С 2.570101000.27751500-1.05691900С 3.13168100-0.543203000.10685400 С 2.90561600 0.36613700 1.31423300С 2.43792000 -0.338244002.575062000 1.73431400 0.81112400 -1.01178800Ο 0.31958100 0.11502400 -0.19460600Ο 0.10049100 -2.28865200-1.35616900Ο 2.34662000-3.16354000-0.12398600Ο 3.61469800 -1.161976001.45365000Ο 2.89092000 2.945549000.34468600 1.88308100 1.30530500 Ο 0.91466400 Ο 0.01859100 3.03245600 -0.282958000 2.20503700-0.48036500-2.18285800Ο 4.50801800-0.84608900-0.00156400Ο 1.23645500 -1.062932002.36252300 Η 0.22161300 0.23069000 -2.19266800Η 1.72112800 -1.64305900-2.10797000Η 1.19437900 -1.780160000.89536600 Η 3.71679900 -0.95614000-0.61236400Η 1.73861600 0.68335200 1.06191500 Η 4.13019300 1.49049200 1.17561900 Η 4.11450600 1.62853500 -0.60001600Η 0.13594200-3.16181800-1.69660400Η 2.82737700 -3.393570000.68391100 4.55912500-0.96559400Η 1.40979200 Η 2.58684100 3.116059001.24665200 Η 1.88594800 2.96909300 -1.07440500-2.06188500Η 0.66219800 2.15918200 Η 3.32427500 1.00326800 -1.38127900Η 2.54494700-1.465973000.20745800 Η 3.82333900 0.92702500 1.52393800Η 3.20075700 -1.055086002.89237800 Η 2.30639200 0.40709300 3.36913800 Η 0.85754500 2.64050400-0.44089400Η 1.61806000 -1.20840900-1.90289500Η 4.61635000 -1.57970800-0.62141900Η 0.62816000 -0.498385001.85776400

Table S5. Cartesian coordinates of S2-gt-gt-gg optimized at M06-2X/6-31++G(d,p) level in water (IEF-PCM/bondi)

Energy (Hartree) = -1297.5750817ZPE (Hartree) = 0.3734382С 0.82706900-0.70047000-1.04796800С 2.01014800 -1.58420700-0.65799000С 2.69133500-1.018871000.57967400С 3.07065100 0.437656000.33909900 С 1.84434800 1.24018300-0.10727300С 2.21013100 2.64782600-0.54637200С -1.962715001.86150500 -1.21827500С 1.49390700 -0.80004500-0.29390100С 2.23305500 -0.887132001.06973100 С 3.36719500 0.121801000.90014600 С 2.74968600 1.16656000-0.03276100С 1.97656600 2.260103000.69168600 0 1.24680000 0.62167600 -1.24991500Ο 0.11180200 -0.800511000.00036700 0 1.50274900 -2.88927500-0.43648300Ο 3.83659700-1.809605000.84037100 1.55910400Ο 3.596181000.93788400Ο 1.08908600 3.32415400-1.102883000.40240500 Ο 1.90090600 -0.91145800Ο 1.36258700 -3.19087800-0.732093000 1.43479600 -0.480680002.16057400Ο 4.44640900 -0.559421000.28006300 Ο 1.56249000 3.27075500 -0.21197300Η 0.40107500 -1.02611000-1.999425002.72139000 Η -1.58584900-1.49268300Η 1.99536400 -1.067798001.43042200 Η 3.83314300 0.47194400-0.45146600Η 1.11195400 1.279805000.71168200 Η 2.54159800 3.229600000.31564500 Η 3.02259200 2.60496900-1.28176400Η 2.21686900 -3.53370200-0.529220001.63229800 Η 4.26658700 -1.456659004.25857100 1.615956001.37408400 Η Η 0.89344500 2.91334400-1.95765100Η 1.51363800 -1.75223600-2.236853002.95125100-2.03369600Η -1.244734001.22569700 Η 2.62232800 -1.89914600Η 3.66352500 0.541151001.86718600 Η 3.51334300 1.63472500 -0.66298900Η 1.11912500 1.83005300 1.21994000 Η 2.64292200 2.715189001.43349800Η 0.39082300 -3.14585200-0.67254600Η -0.717031000.51460800 1.96718300 Η 5.16907600 0.06637300 0.13602300 Η 0.61194300 3.17881000 -0.40449100

Table S6. Cartesian coordinates of S3-gt-tg-gt optimized at M06-2X/6-31++G(d,p) level in water (IEF-PCM/bondi)

Energy (Hartree) = -1297.5804696ZPE (Hartree) = 0.3738323С 0.62147000-1.01628100-0.42136900С 1.78077900 -1.40311900-0.85208800С 2.49017300-1.163494000.46874500С 2.94975700 0.283657000.53530200С 1.75691700 1.222422000.32378000С 2.16793200 2.68150700 0.22056400 С 1.81912300 -2.19935300-1.17149000С 1.67865400 -0.87121300-0.43962900С -0.782333002.554158000.82022500 С 2.74280600 0.720810000.95097800 С 2.89133600 1.13992000 -0.51076200С 2.40829400 2.53586900-0.84609300Ο 1.09576200 0.90399200 -0.91447000Ο 0.33621100 -0.67267900-0.016762000 1.25543100 -2.71629300-0.93459800Ο 3.58156600-2.066399000.52161900Ο 3.524611000.486780001.81660200Ο 3.07384900 2.90623500-0.849424002.11656200 0.17987900 Ο -1.26467200Ο 1.44161700 -3.25200500-0.30124400Ο 1.99760200 -1.348689001.97897600 Ο 3.89625200 1.112162001.66590800 Ο 1.06464600 2.75121100 -0.45698900Η 0.18645000-0.50080600-2.01511600-1.22901300Η 2.48852100-1.67365900Η 1.79615100 -1.361000001.29885500 Η -0.253022003.69339200 0.45548700Η 1.05106500 1.107475001.15850200 Η 1.27213200 3.302111000.11017800 Η 2.67898900 2.974652001.14067400 Η 1.97871000 -3.34144500-0.780052004.00811000 -1.97551000Η 1.38518900 4.22676600 1.146825001.75373900 Η 2.68974200Η 2.62184100 -1.67673700Η 1.21947800 -2.20479800-2.089685002.86852700 Η -2.33965400-1.44068300Η 3.52796100 -1.236848000.58651100Η 1.84013900 1.163393001.39155900 Η 3.94494000 1.04360300 -0.80286400Η 3.02428400 3.25999200-0.30509400Η 2.53790500 2.70734100-1.92198000Η 0.46824500 -3.23524000-0.26014600Η 1.82373400 -2.284014001.79073900 Η 3.71217400 1.04880600 2.61230700 Η 0.49730300 2.07551500-0.86828200

Table S7. Cartesian coordinates of S1-gg-tg-gg optimized at M06-2X/6-31++G(d,p) level in water (IEF-PCM/bondi)

En ZP	ergy (Hartree E (Hartree) =) = -1297.5791 = 0.3740464	1994
С	0.54656000	-0.59927700	-1.10758900
С	1.69534000	-1.57943900	-0.88205400
С	2.46376800	-1.19461300	0.36902200
С	2.95498000	0.23950700	0.24932400
С	1.78756000	1.18256000	-0.07858000
С	2.26691100	2.57266500	-0.47561900
С	1.94476800	-2.29124800	-0.87965900
С	1.71919700	-0.89201900	-0.32257400
С	2.49098700	-0.62615600	0.97996900
С	2.62806100	0.88785900	0.94260800
С	2.88632100	1.13497800	-0.54297600
С	2.40071000	2.46417200	-1.08256100
0	1.05728400	0.71167400	-1.22004200
0	0.34536900	-0.68664300	-0.02445800
0	1.14565700	-2.88081400	-0.77545900
0	3.53841400	-2.11215000	0.49229300
0	3.55812000	0.56951400	1.48854100
0	2.99773900	3.10901200	0.62315100
0	2.19579900	0.06814800	-1.23298800
0	1.52126300	-3.24749900	0.07622800
0	1.86059500	-1.07120900	2.15365600
0	3.70720700	1.40289100	1.69365300
0	1.02192900	2.67256200	-0.83951100
Η	0.04475500	-0.79891200	-2.05694400
Η	2.36470200	-1.52283400	-1.75079400
Н	1.79927700	-1.27238600	1.24110200
Η	3.69336500	0.29205200	-0.56619200
Н	1.11835000	1.24503600	0.79145000
Η	2.90695000	2.48583800	-1.36176400
Н	1.40515100	3.20390800	-0.71470700
Н	1.86198900	-3.49216100	-0.54821800
Н	3.94551700	-1.99602400	1.36163100
Η	3.78613600	1.51318800	1.46120600
Η	3.42420100	3.93007500	0.34624800
Η	1.42106500	-2.41991300	-1.83475200
Η	3.01502300	-2.43001400	-1.04949600
Η	3.49181200	-1.06988100	0.87603800
Н	1.67994900	1.34598700	1.25280600
Н	3.96218800	1.03759300	-0.73729600
Н	2.94619000	3.26829100	-0.58038600
Н	2.62164800	2.51422200	-2.15604600
Η	0.54720700	-3.25374300	0.04399800
Η	1.73244100	-2.02875600	2.07034400
Η	3.44748600	1.44348400	2.62337200
н	0.51625300	1.92711800	-1.20797200

Table S8. Cartesian coordinates of S1-tg-tg-gg optimized at M06-2X/6-31++G(d,p) level in water (IEF-PCM/bondi)

En ZP	ergy (Hartree E (Hartree) =) = -1297.5792 = 0.3736817	2451
С	0.73869600	-0.43781600	-1.06563800
С	2.10581100	-1.11464700	-0.94913000
С	2.86208300	-0.57604400	0.26103400
С	2.91701200	0.94465300	0.22143400
С	1.49320300	1.49133800	0.13264300
\mathbf{C}	1.43476400	3.00708800	0.05560400
С	1.31930900	-2.75727200	-0.68277100
С	1.36375800	-1.30471100	-0.22078000
С	2.15499600	-1.04381000	1.06668200
С	2.53963500	0.41872200	0.87991200
С	2.93379200	0.40352500	-0.59888300
С	2.86745200	1.71172500	-1.35678500
0	0.87536200	0.96677700	-1.05653900
0	0.04394900	-0.84453500	0.02983800
0	1.97099100	-2.51950700	-0.89897500
0	4.20065700	-1.04573800	0.28619300
0	3.51296500	1.45460400	1.40111500
0	0.18056300	3.52885700	0.46296000
0	2.01249200	-0.53514400	-1.20353800
0	0.50616300	-3.54055900	0.17770900
0	1.38648500	-1.35353600	2.20383100
0	3.59932900	0.76714000	1.74217300
0	1.57870500	2.30166200	-1.32825600
Η	0.25943800	-0.69036500	-2.01440100
Η	2.67989300	-0.88130200	-1.85240300
Η	2.34111500	-0.88008800	1.18126100
Η	3.48582700	1.26372900	-0.66598100
Η	0.92690300	1.16155900	1.01456000
Η	2.18113300	3.41993100	0.73718800
Η	1.68514300	3.32038400	-0.96727300
Η	1.26777300	-2.75537500	-0.26345700
Η	4.18838200	-2.00151100	0.43327200
Η	4.36201300	1.00483900	1.51911200
Η	0.51963300	3.18217500	-0.12070000
Η	0.86783400	-2.80716500	-1.67820300
Η	2.34112300	-3.14752700	-0.73922000
Η	3.07371300	-1.64680700	1.04117300
Η	1.66156600	1.05702200	1.04810000
Η	3.95282300	0.00400900	-0.68453700
Η	3.56345400	2.42104900	-0.90019400
Η	3.18180500	1.53722800	-2.39267400
Η	0.81730700	-3.43805600	1.09003400
Η	1.97283200	-1.38367100	2.97197900
Η	3.66533700	1.73012400	1.79015700
Η	0.90326000	1.63314600	-1.53981100

Table S9. Cartesian coordinates of S1-gt-tg-gg^{ccw} optimized at M06-2X/6-31++G(d,p) level in water (IEF-PCM/bondi)