Supporting Information

Palladium-catalyzed cross-dehydrogenative coupling of maleimides with simple arenes: A fast track to highly substituted maleimides

Farnaz Jafarpour* and Mitra Shamsianpour

School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran, Iran jafarpour@ut.ac.ir

Table of Contents

1 General remark	S1					
2 Direct diarylation of maleimides						
2-1 Screening of reaction conditions	S2					
2-2 General experimental procedure for	S3					
2-3Compounds characterization data	S 3					
4 Copies of ¹ H and ¹³ C NMR Spectra	S 9					

1 General remarks: The following includes general experimental procedures, specific details for representative reactions, and isolation and spectroscopic information for the compounds. All reagents and metal catalysts were commercially available and used as received. The reactions were carried out in an oil bath using Microwave Vials (2-5 ml). ¹H and ¹³C NMR spectra were recorded at room temperature on 400, 500 and 100, 125 MHz spectrometers respectively, using CDCl₃ as the NMR solvent. ¹H NMR spectra are referenced to tetramethylsilane (0.00 ppm) and ¹³C NMR spectra are given in ppm.

2 Direct diarylation of maleimides

2-1 Screening of reaction conditions

Entry	[Pd]	Base	L	[0]	Solvent	T (°C)	t (h)	Yield (%)
1 ^b	$Pd(OAc)_2$		Ру	AgOAc	AcOH	100	24	0
2 ^b	$Pd(OAc)_2$		Ру	$K_2S_2O_8$	AcOH	100	24	0
3 ^b	$Pd(OAc)_2$		Py	TBHP	AcOH	100	24	0
4 ^b	$Pd(OAc)_2$		Py	$K_2S_2O_8$	AcOH	100	24	0
5 ^b	$Pd(OAc)_2$		Bipy	$K_2S_2O_8$	AcOH	100	24	0
6 ^b	$Pd(OAc)_2$		Phen	$K_2S_2O_8$	AcOH	100	24	0
7°	$Pd(OAc)_2$		Phen	$K_2S_2O_8$	AcOH	100	24	0
8°	$Pd(OAc)_2$			$K_2S_2O_8$	AcOH	100	24	0
9 ^d	$Pd(OAc)_2$			$K_2S_2O_8$	TFA	100	24	10
10 ^e	$Pd(OAc)_2$			AgOAc	TFA /PivOH	110	24	45
11^{f}	$Pd(OAc)_2$			AgOAc	TFA /PivOH	110	24	30
12	Pd(OAc) ₂			AgOAc	TFA /PivOH	110	24	54
13	$Pd(OAc)_2$			AgOAc	TFA /PivOH	130	24	51
14	$Pd(OAc)_2$			AgOAc	TFA /PivOH	110	36	54
15 ^g	$Pd(OAc)_2$			AgOAc	TFA /PivOH	110	24	22
16	$Pd(OAc)_2$			AgOAc	TFA	110	24	35
17	$Pd(OAc)_2$			AgOAc	PivOH	110	24	trace
18	$Pd(OAc)_2$			$K_2S_2O_8$	TFA /PivOH	110	24	43
19	$Pd(OAc)_2$			$Cu(OAc)_2$	TFA /PivOH	110	24	38
20	$Pd(OAc)_2$			BQ	TFA /PivOH	110	24	0
21	$Pd(OAc)_2$			AgNO ₃	TFA /PivOH	110	24	0
22	$Pd(OAc)_2$			Ag ₂ O	TFA /PivOH	110	24	52
23	$Pd(OAc)_2$			Ag ₂ CO ₃	TFA /PivOH	110	24	50
24	$Pd(OAc)_2$			BP	TFA /PivOH	110	24	16
25	$Pd(OAc)_2$			TBP	TFA /PivOH	110	24	trace
26	$Pd(OAc)_2$			TBHP	TFA /PivOH	110	24	0
27	$Pd(OAc)_2$			CuBr ₂	TFA /PivOH	110	24	0
28	$Pd(OAc)_2$			CuCl ₂	TFA /PivOH	110	24	0
29 ^h	$Pd(OAc)_2$		TFAA	AgOAc	TFA /PivOH	120	24	?
30 ^h	$Pd(OAc)_2$		TFAA	$K_2S_2O_8$	TFA /PivOH	120	24	0
31 ⁱ	$Pd(OAc)_2$			AgOAc	TFA /PivOH /ACN	110	24	0
32 ⁱ	$Pd(OAc)_2$			AgOAc	TFA /PivOH/DCE	110	24	20
33 ⁱ	$Pd(OAc)_2$			AgOAc	TFA /PivOH/dioxane	110	24	0
34	$Pd(TFA)_2$			AgOAc	TFA /PivOH	110	24	50
35	PdCl ₂			AgOAc	TFA /PivOH	110	24	0
36	$Pd(dba)_2$			AgOAc	TFA /PivOH	110	24	0
37	$Pd(acac)_2$			AgOAc	TFA /PivOH	110	24	40
38 ^j	$Pd(OAc)_2$		Phen.	AgOAc	TFA /PivOH	110	24	52
39 ^j	$Pd(OAc)_2$		BiPy	AgOAc	TFA /PivOH	110	24	35
40 ^j	$Pd(OAc)_2$		PPh ₃	AgOAc	TFA /PivOH	110	24	50
41 ^j	$Pd(OAc)_2$		DMEDA	AgOAc	TFA /PivOH	110	24	38
42 ^j	$Pd(OAc)_2$		TBAI	AgOAc	TFA /PivOH	110	24	25
43 ^k	$Pd(OAc)_2$		Phen.	AgNO ₃	DMSO	110	22	0
	Pd(OAc) ₂	K_2CO_3		AgOAc	TFA/PivOH	130	24	29

Table S1. Screening of the reaction conditions

^aReaction conditions: N-Methylmaleimide **1a** (0.1 mmol), toluene **2a** (4 mmol), catalyst (20 mol%), oxidant (0.3 mmol), TFA (1 mmol), PivOH (0.6 mmol), 24 h. ^bCatalyst (5 mol%), ligand (5 mol%), oxidant (0.1 mmol), solvent (1mL). ^cLikewise b but solvent (0.1 mL), ^dCatalyst (10 mol%), TFA (0.5 mmol). ^eCatalyst (5 mol%), ^fCatalyst (10

mol%). ^gOxidant (1.5 mmol), ^hCatalyst (10 mol%), oxidant (0.1 mmol), TFAA (0.1 mmol), ⁱTFA /PivOH /solvent (0.08, 0.06, 0.2 mL), ^jLigand (20 mol%). ^kCatalyst (10 mol%), ligand (20 mol%), oxidant (0.2 mmol), solvent (0.15 mL). ¹Catalyst (10 mol%), base (0.1 mmol), oxidant (0.4 mmol).

2-2 General experimental procedure

A vial equipped with a stir bar was charged with N-substituted maleimide (0.1 mmol, 1 equiv), arene (40 equiv), AgOAc (3 equiv), $Pd(OAc)_2$ (20 mol%), TFA (10 equiv), PivOH (6 equiv) and capped. The resulting mixture was heated in an oil bath at 110 °C for 24 h, cooled then filtered through a short plug of silica. Removal of the solvent gave a crude mixture which was purified by flash column chromatography (hexane/EtOAc gradient).

2-3 Compound characterization data

1-methyl-3,4-di-p-tolyl-1H-pyrrole-2,5-dione (3a)

Yellow solid (54%); mp 178-180 °C; $R_f = 0.45$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (250 MHz, CDCl₃) δ 2.37 (s, 6H), 3.15 (s, 3H), 7.17 (d, J = 8.2 Hz, 4H), 7.39 (d, J = 8.2 Hz, 4H); ¹³C NMR (62.5 MHz, CDCl₃) δ 140.0, 129.8, 129.3, 126.0, 24.2, 21.5. MS *m/z* (%) 291 (M•+, 100), 276 (25), 233 (21), 219 (50), 206 (35), 191 (25). Anal. Calcd for C₁₉H₁₇NO₂: C, 78.33; H, 5.88; N, 4.81. Found: C, 78.61; H, 6.00; N, 5.02.

3,4-bis(3,4-dimethylphenyl)-1-methyl-1H-pyrrole-2,5-dione (3b)

Yellow solid (63%); mp 149-150 °C; $R_f = 0.46$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 6H), 2.28 (s, 6H), 3.15 (s, 3H), 7.07-7.18 (m, 4H), 7.33 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 138.6, 136.8, 135.7, 130.8, 129.7, 127.3, 126.4, 29.7, 24.2, 19.8. Anal. Calcd for C₂₁H₂₁NO₂: C, 78.97; H, 6.63; N, 4.39. Found: C, 79.28; H, 6.72; N, 4.54.

3,4-bis(3,4-dimethoxyphenyl)-1-methyl-1H-pyrrole-2,5-dione (3c)

Orange solid (66%); mp 172-173 °C; $R_f = 0.61$ on silica gel (hexane/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 3.14 (s, 3H), 3.72 (s, 6H), 3.91 (s, 6H), 6.87 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 2.2 Hz, 2H), 7.21 (dd, J = 8.2, 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 23.1, 54.8, 54.9, 110.0, 111.6, 120.5, 122.5, 133.3, 147.7, 149.3, 170.3. Anal. Calcd for $C_{21}H_{21}NO_6$: C, 65.79; H, 5.52; N, 3.65. Found: C, 65.98; H, 5.62; N, 3.79.

3,4-bis(4-fluorophenyl)-1-methyl-1H-pyrrole-2,5-dione (3d)

Yellow solid (21%); mp 176-178 °C; $R_f = 0.33$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (300 MHz, CDCl₃) δ 3.17 (s, 3H), 7.05-7.11 (m, 4H), 7.46-7.51 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 162.5 (d, ¹*J*_{CF} = 250.6 Hz), 134.1, 130.9 (d, ³*J*_{CF} = 8.4 Hz), 126.5, 114.9 (d, ²*J*_{CF} = 21.8 Hz), 23.3. Anal. Calcd for C₂₂H₁₅NO₂: C, 81.21; H, 4.65; N, 4.30. Found: C, 81.40; H, 4.74; N, 4.42.

3,4-di([1,1'-biphenyl]-4-yl)-1-methyl-1H-pyrrole-2,5-dione (3e)

Yellow solid (51%); $R_f = 0.60$ on silica gel (hexane/EtOAc 8.5:1.5); ¹H NMR (400 MHz, CDCl₃) δ 3.21 (s, 3H), 7.32-7.54 (m, 10H); 7.60-7.66 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 23.3, 126.1, 127.8, 127.9, 127.9, 129.3, 139.1, 139.1, 141.5, 141.6, 169.9. Anal. Calcd for C₂₂H₁₅NO₂: C, 81.21; H, 4.65; N, 4.30. Found: C, 81.40; H, 4.74; N, 4.43.

3,4-bis(3,4-dimethylphenyl)-1-phenyl-1H-pyrrole-2,5-dione (3f)

Yellow solid (78%); mp 181-182 °C; $R_f = 0.52$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃) δ 2.26 (s, 6H), 2.30 (s, 6H), 7.11 (d, 2H), 7.24 (dd, J = 8.0, 1.5 Hz 2H), 7.35-7.43 (m, 3H), 7.45-7.54 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 28.7, 125.1, 125.2, 126.4, 126.6, 128.0, 128.8, 130.0, 131.0, 134.5, 135.8, 137.9, 169.0. Anal. Calcd for C₂₆H₂₃NO₂: C, 81.86; H, 6.08; N, 3.67. Found: C, 82.09; H, 6.18; N, 3.83.

1-benzyl-3,4-bis(3,4-dimethylphenyl)-1H-pyrrole-2,5-dione (3g)

Yellow solid (56%); mp 109-110 °C; $R_f = 0.55$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃): δ 2.24 (s, 6H), 2.28 (s, 6H), 4.81 (s, 2H), 7.05-7.11 (m, 2H), 7.18 (dd, J = 7.9, 1.4

Hz, 2H), 7.29-7.38 (m, 5H), 7.46-7.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.7, 19.8, 41.8, 126.3, 127.3, 127.7, 128.6, 128.8, 129.7, 130.8, 135.4, 136.6, 136.7, 138.7, 170.8.

1-phenyl-3,4-di-p-tolyl-1H-pyrrole-2,5-dione (3h)

Orange solid (52%); mp 158-159°C; $R_f = 0.50$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (300 MHz, CDCl₃) δ 2.39 (s, 6H), 7.20 (d, J = 8.1 Hz, 4H), 7.45-7.56 (m, 9H); ¹³C NMR (100 MHz, CDCl₃); δ 168.8, 139.2, 134.5, 130.9, 128.9, 128.7, 128.3, 128.0, 126.6, 125.1, 124.8, 20.5. Anal. Calcd for C₂₄H₁₉NO₂: C, 81.56; H, 5.42; N, 3.96. Found: C, 81.84; H, 5.56; N, 4.15.

3,4-bis(4-isopropylphenyl)-1-phenyl-1H-pyrrole-2,5-dione (3i)

Dark yellow solid (42%); $R_f = 0.62$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃): δ 1.17 (s, 6 H) 1.29 (s, 6 H) 2.82-2.99 (m, 2 H) 7.24 - 7.54 (m, 13 H). Anal. Calcd for $C_{28}H_{27}NO_2$: C, 82.12; H, 6.65; N, 3.42. Found: C, 82.34; H, 6.75; N, 3.58.

1-benzyl-3,4-diphenyl-1H-pyrrole-2,5-dione (3j)

Green- yellow solid (40%); mp 159 -160 °C (Ref.¹ 132-134 °C); $R_f = 0.50$ on silica gel (hexane/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃) δ 4.83 (s, 2H), 7.28-7.43 (m, 9H), 7.46-7.52 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 42.1, 127.9, 128.6, 128.6, 128.7, 128.9, 129.9, 129.9, 136.2,

¹ H.-D. Xie, L. A. Ho, M. S. Truelove, B. Corry, S. G. Stewart, *J. Fluoresc.*, 2010, **20**, 1077.

136.5, 170.5. Anal. Calcd for C₂₃H₁₇NO₂: C, 81.40; H, 5.05; N, 4.13. Found: C, 81.66; H, 5.19; N, 4.30.

3,4-bis(3,4-dimethoxyphenyl)-1-phenyl-1H-pyrrole-2,5-dione (3k)

Yellow solid (72%); mp 187 °C; $R_f = 0.65$ on silica gel (hexane/EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃) δ 3.74 (s, 6H), 3.91 (s, 6H), 6.88 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 1.7 Hz, 2H), 7.26 (dd, J = 8.2, 2.0 Hz, 2H), 7.34-7.41 (m, 1H), 7.43-7.50 (m, 4H); ¹³C NMR (100MHz, CDCl₃) δ 54.8, 54.9, 109.9, 111.7, 120.2, 122.7, 125.2, 126.7, 128.1, 130.8, 133.1, 147.7, 149.5, 168.9. Anal. Calcd for C₂₆H₂₃NO₆: C, 70.10; H, 5.20; N, 3.14. Found: C, 70.44; H, 5.34; N, 3.33.

3,4-bis(2-methoxyphenyl)-1-methyl-1H-pyrrole-2,5-dione (3m)

Orange solid (mixture of isomers). ¹H NMR (400MHz, CDCl₃) δ 3.15 (s, 3H), 3.44 (s, 1H), 3.55 (s, 2H), 3.81 (s, 2H), 3.84 (s, 2H), 6.82 (d, *J* = 8.78 Hz, 1H), 6.88 (d, *J* = 9.03 Hz, 1H), 6.93 (d, *J* = 8.28 Hz, 1H), 7.02 (t, *J* = 7.53 Hz, 1H), 7.37-7.44 (m, 1H), 7.46-7.52 (m, 2 H), 7.52-7.56 (m, 1H); ¹³C NMR (100MHz, CDCl₃) δ 24.2, 55.0, 55.2, 55.3, 111.0, 111.5, 113.7, 114.1, 114.5, 120.3, 120.8, 120.9, 121.4, 130.4, 130.6, 130.9, 130.9, 131.1, 131.4, 137.1, 157.3, 160.7, 171.5.

3-(2-methoxyphenyl)-1-methyl-1H-pyrrole-2,5-dione (3n)

Yellow solid (33%); $R_f = 0.43$ on silica gel (hexane/EtOAc 8.5:1.5); ¹H NMR (400MHz, CDCl₃) δ 3.07 (s, 3H), 3.92 (s, 3H), 6.98 (d, J = 8.53 Hz, 1H), 7.05 (td, J = 7.53, 1.00 Hz, 1H), 7.10 (s, 1H), 7.42 (td, J = 7.91, 1.76 Hz, 1 H), 8.26 (dd, J = 7.78, 1.76 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ 171.7, 171.7, 159.4, 139.1, 131.9, 131.4, 127.5, 120.7, 117.9, 111.0, 55.5, 23.8. Anal. Calcd for C₁₂H₁₁NO₃: C, 66.35; H, 5.10; N, 6.45. Found: C, 66.72; H, 5.21; N, 6.66.

3,4-bis(2-methoxy-3-methylphenyl)-1-methyl-1H-pyrrole-2,5-dione (30)

Yellow solid (41%); ¹H NMR (400MHz, CDCl₃) δ 2.17 (s, 6H), 3.13 (s, 3H), 3.85 (s, 6H), 6.79 (d, *J* = 8.28 Hz, 2H), 7.31-7.38 (m, 4H); ¹³C NMR (100MHz, CDCl₃) δ 16.2, 24.1, 55.3, 109.8, 121.0, 126.8, 129.0, 131.9, 134.3, 158.9, 171.7.

3-(2-methoxy-3-methylphenyl)-1-methyl-1H-pyrrole-2,5-dione (3p)

Yellow solid (39%,); mp 88-89 °C; $R_f = 0.23$ on silica gel (hexane/EtOAc 8.5:1.5); ¹H NMR (400MHz, CDCl₃) δ 2.26 (s, 3H), 3.07 (s, 3H), 3.89 (s, 3H), 6.58 (s, 1H), 6.88 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 1.5 Hz, 1H), 7.90 (dd, J = 8.7, 2.13 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ 16.3, 23.7, 55.5, 110.0, 120.6, 121.0, 127.5, 128.3, 130.7, 143.7, 160.4, 170.9, 171.3. Anal. Calcd for C₁₃H₁₃NO₃: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.85; H, 5.81; N, 6.26.

Copies of ¹H and ¹³C NMR Spectra

