Electronic Supplementary Information

Nickel Oxide Aerogel for High Performance Supercapacitor Electrode

Zhiyi Zhang^a, Qiuyue Gao^a, Haibo Gao^a, Zhenyu Shi^a, Junwei Wu^c, Mingjia Zhi^{a,*}, Zhanglian Hong^{a,b,*}

a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China

b Research Center of Near Space Aircraft Technology, Zhejiang University, Hangzhou 310027, PR China

c Department of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518055, PR China

* Corresponding authors.

E-mail address: hong_zhanglian@zju.edu.cn, mingjia_zhi@zju.edu.cn

Figure S1 Digital photograph of the as-prepared monolithic NiO aerogel.

Figure S2 (a), (b) and (c) are the galvanostatic charge/discharge curves of electrodes made of A1, A2 and A3 in 6 M KOH at different current density from 0.5 to 20 A g^{-1} , respectively.

Figure S3 (a), (b) and (c) are the galvanostatic charge/discharge curves of electrodes made of A1, A2 and A3 in 6 M KOH at current density of 20 A g⁻¹, respectively. The IR drop of each electrode was labeled.

Figure S4 (a), (b) and (c) are EIS spectra of electrodes made of A1, A2 and A3 in 6 M KOH at high frequency range, the equivalent series resistances of electrodes made of A1, A2 and A3 are 1.36, 0.88 and 0.95 Ω , respectively.

Figure S5 EIS spectra of A2 before and after 3000 cycles of charge-discharge at the current density of 10 A g^{-1} .