A new type of triphenylamine based coumarin-rhodamine hybrid compounds: Synthesis,

Photophysical properties, viscosity sensitivity and energy transfer

Shantaram Kothavale, Nagaiyan Sekar*

Department of Dyestuff Technology, Institute of Chemical Technology, Matunga,

Mumbai - 400 019, India.

E-mail: n.sekar@ictmumbai.edu.in, nethi.sekar@gmail.com

Tel: +91 22 3361 2707; Fax: +91 22 3361 1020.

Supporting information contents

List of Figures:

Figure S1: Absorption spectra of MCMR in all solvents (spirocyclic form) Figure S2: Emission spectra of MCMR in all solvents (spirocyclic form) Figure S3: Absorption spectra of MCMR in all solvents (open form) Figure S4: Emission spectra of MCMR in all solvents (open form) Figure S5: Absorption spectra of MCDR in all solvents (spirocyclic form) Figure S6: Emission spectra of MCDR in all solvents (spirocyclic form) Figure S7: Normalized spectra of MCDR in all solvents (spirocyclic form) Figure S8: Absorption spectra of MCDR in all solvents (open form) Figure S9: Emission spectra of MCDR in all solvents (open form) Figure S10: Absorption spectra of DCDR in all solvents (spirocyclic form) Figure S11: Emission spectra of DCDR in all solvents (spirocyclic form) Figure S12: Normalized spectra of DCDR in all solvents (spirocyclic form) Figure S13: Absorption spectra of DCDR in all solvents (open form) Figure S14: Emission spectra of DCDR in all solvents (open form) Figure S15: Mac-Rae solvent polarity plots of MCMR, MCDR and DCMR in all solvents Figure S16: Absorption spectra of MCMR with the increased percentage of TFA (5 to 90 μ l) in toluene Figure S17: Emission spectra of MCMR with the increased percentage of TFA (5 to 90 µl) in toluene Figure S18: Emission spectra of MCMR (a) and MCDR (b) with the increased percentage of PEG in ethanol for their spirocyclic form.

List of Tables:

 Table S1: Photophysical parameters of MCMR in all solvents (spirocyclic form)

Table S2: Photophysical parameters of MCMR in all solvents (open form)

Table S3: Photophysical parameters of MCDR in all solvents (spirocyclic form)

Table S4: Photophysical parameters of MCDR in all solvents (open form)

Table S5: Photophysical parameters of DCMR in all solvents (open form)
Table S6: Photophysical parameters of DCMR in all solvents (open form)
Table S7: Estimated Kamlet-Taft and Catalan parameters of MCDR (spirocyclic form)
Table S8: Estimated Kamlet-Taft and Catalan parameters of DCMR (spirocyclic form)

List of Spectrum:

- Spectrum S1: ¹H NMR spectra of compound 2 in DMSO-d₆
- Spectrum S2: ¹³C NMR spectra of compound 2 in DMSO-d₆
- Spectrum S3: ¹H NMR spectra of compound 5 in DMSO-d₆
- Spectrum S4: ¹³C NMR spectra of compound 5 in DMSO-d₆
- Spectrum S5: ¹H NMR spectra of compound 8 in CDCl₃
- Spectrum S6: ¹³C NMR spectra of compound 8 in CDCl₃
- Spectrum S7: ¹H NMR spectra of compound 9 in DMSO-d₆
- Spectrum S8: ¹³C NMR spectra of compound 9 in DMSO-d₆
- Spectrum S9: ¹H NMR spectra of compound 3 in DMSO-d₆
- Spectrum S10: ¹³C NMR spectra of compound 3 in DMSO-d₆
- Spectrum S11: ¹H NMR spectra of compound 6 in DMSO-d₆
- Spectrum S12: ¹³C NMR spectra of compound 6 in DMSO-d₆
- Spectrum S13: ¹H NMR spectra of compound 10 in DMSO-d₆
- Spectrum S14: ¹³C NMR spectra of compound 10 in DMSO-d₆
- Spectrum S15: ¹H NMR spectra of MCMR in CDCl₃
- Spectrum S16: ¹³C NMR spectra of MCMR in CDCl₃
- Spectrum S17: HR-MS spectra of MCMR
- Spectrum S18: ¹H NMR spectra of MCDR in DMSO-d₆
- Spectrum S19: ¹³C NMR spectra of MCDR in DMSO-d₆
- Spectrum S20: HR-MS spectra of MCDR
- Spectrum S21: ¹H NMR spectra of DCMR in DMSO-d₆
- Spectrum S22: ¹³C NMR spectra of DCMR in DMSO-d₆

Figure S1: Absorption spectra of MCMR in all solvents (spirocyclic form)

Figure S2: Emission spectra of MCMR in all solvents (spirocyclic form)

Figure S3: Absorption spectra of MCMR in all solvents (open form)

Figure S4: Emission spectra of MCMR in all solvents (open form)

Figure S5: Absorption spectra of MCDR in all solvents (spirocyclic form)

Figure S6: Emission spectra of MCDR in all solvents (spirocyclic form)

Figure S7: Normalized spectra of MCDR in all solvents (spirocyclic form)

Figure S8: Absorption spectra of MCDR in all solvents (open form)

Figure S9: Emission spectra of MCDR in all solvents (open form)

Figure S10: Absorption spectra of DCDR in all solvents (spirocyclic form)

Figure S11: Emission spectra of DCDR in all solvents (spirocyclic form)

Figure S12: Normalized spectra of DCDR in all solvents (spirocyclic form)

Figure S13: Absorption spectra of DCDR in all solvents (open form)

Figure S14: Emission spectra of DCDR in all solvents (open form)

Figure S15: Mac-Rae solvent polarity plots of MCMR, MCDR and DCMR in all solvents

Figure S16: Absorption spectra of MCMR with the increased percentage of TFA (5 to 90 µl) in toluene

Figure S17: Emission spectra of MCMR with the increased percentage of TFA (5 to 90 µl) in toluene

Figure S18: Emission spectra of MCMR (a) and MCDR (b) with the increased percentage of PEG in ethanol for their spirocyclic form.

Compound	λ_{abs}	ε _{max} × 10 ⁴	fwhm	λ_{ems}	Stokes	shift	f	μ _{ge}
	(nm)	(M ⁻¹ cm ⁻¹)	(nm)	(nm)	(nm)	(cm ⁻¹)		(debye)
Hexane	435	6.11	64	488	53	2497	0.98	9.55
Toluene	443	5.62	68	505	62	2771	0.98	9.61
Dioxane	440	5.94	68	515	75	3310	1.05	9.90
EtOAc	442	6.04	68	531	89	3792	1.06	10.01
CHCI₃	450	6.00	70	529	79	3319	1.07	10.11
DCM	450	6.37	70	542	92	3772	1.12	10.38
EtOH	434	4.09	83	536	102	4385	0.95	9.38
ACN	446	6.16	70	560	114	4564	1.11	10.25
DMF	449	5.90	72	557	108	4318	1.07	10.12

Table S1: Photophysica	parameters of MCMR in all	solvents (spirocyclic form)
------------------------	---------------------------	-----------------------------

Table S2: Photophysical parameters of MCMR in all solvents (open form)

Compound	λ_{abs}	ε _{max} × 10 ⁴	fwhm	λ_{ems}	Stokes	s shift	f	μ _{ge}
	(nm)	(M ⁻¹ cm ⁻¹)	(nm)	(nm)	(nm)	(cm ⁻¹)		(debye)
Hexane	586	9.85	77	632	46	1242	1.26	12.54
Toluene	596	11.21	74	639	43	1129	1.40	13.33
Dioxane	577	9.60	73	633	56	1533	1.09	11.59
EtOAc	598	12.50	68	630	32	849	1.44	13.55
CHCI3	577	8.09	74	639	62	1682	0.95	10.83

DCM	577	10.42	71	639	62	1682	1.15	11.90
EtOH	589	11.24	79	637	48	1279	1.52	13.83
ACN	578	8.53	75	643	65	1749	1.03	11.24
DMF	579	8.49	76	642	63	1695	1.02	11.19

Table S3: Photophysical parameters of MCDR in all solvents (spirocyclic form)

Compound	λ_{abs}	ε _{max} × 10 ⁴	fwhm	λ_{ems}	Stoke	s shift	f	μ _{ge}
	(nm)	(M ⁻¹ cm ⁻¹)	(nm)	(nm)	(nm)	(cm ⁻¹)		(debye)
Hexane	438	7.22	67	500	62	2831	1.22	10.66
Toluene	443	7.08	69	511	68	3004	1.21	10.70
Dioxane	441	7.41	68	516	75	3296	1.28	10.95
EtOAc	441	7.35	69	534	93	3949	1.28	10.95
CHCI3	448	7.16	71	526	78	3310	1.27	10.99
DCM	448	6.80	71	541	93	3837	1.20	10.71
EtOH	436	5.99	81	536	100	4279	1.27	10.88
ACN	443	7.94	72	558	115	4652	1.47	11.79
DMF	448	7.36	71	557	109	4368	1.31	11.20

Table S4: Photophysical parameters of MCDR in all solvents (open form)

Compound	λ_{abs}	ε _{max} × 10 ⁴	fwhm	λ_{ems}	Stoke	s shift	f	μ _{ge}
	(nm)	(M ⁻¹ cm ⁻¹)	(nm)	(nm)	(nm)	(cm ⁻¹)		(debye)
Hexane	586	6.05	124	660	74	1913	1.05	11.45
Toluene	601	10.83	100	646	45	1159	1.52	13.95
Dioxane	580	7.24	101	642	62	1665	0.97	10.94
EtOAc	579	7.60	81	644	65	1743	0.91	10.57
CHCI3	600	10.10	96	640	40	1042	1.35	13.14
DCM	600	9.60	96	640	40	1042	1.28	12.81
EtOH	582	8.63	98	644	62	1654	1.14	11.89
ACN	591	8.70	114	652	61	1583	1.30	12.80
DMF	580	7.60	82	642	62	1665	0.92	10.67

Table S5: Photophysical parameters of DCMR in all solvents (spirocyclic form)

Compound	λ_{abs}	ε _{max} × 10 ⁴	$_{\rm x}$ × 10 ⁴ fwhm $\lambda_{\rm ems}$ Stokes shift		f	μ _{ge}		
	(nm)	(M ⁻¹ cm ⁻¹)	(nm)	(nm)	(nm)	(cm ⁻¹)		(debye)
Hexane	472	8.58	94	507	35	1463	1.79	13.42

Toluene	478	6.95	96	511	33	1351	1.48	12.26	
Dioxane	474	7.91	99	516	42	1717	1.73	13.23	
EtOAc	472	8.02	99	523	51	2066	1.74	13.22	
CHCI ₃	481	8.68	97	520	39	1559	1.76	13.43	
DCM	476	2.5	163	524	48	1924	0.85	9.27	
EtOH	473	5.79	102	533	60	2380	1.27	11.30	
ACN	473	8.05	102	542	69	2691	1.75	13.29	
DMF	477	8.41	106	548	71	2716	1.92	13.97	

Table S6: Photophysical parameters of DCMR in all solvents (open form)

Compound	λ_{abs}	ε _{max} × 10 ⁴	fwhm	λ_{ems}	Stoke	s shift	f	μ _{ge}
	(nm)	(M ⁻¹ cm ⁻¹)	(nm)	(nm)	(nm)	(cm ⁻¹)		(debye)
Hexane	595	3.11	129	642	47	1230	0.49	7.92
Toluene	590	4.33	116	626	36	975	0.65	9.04
Dioxane	582	5.94	77	625	43	1182	0.29	6.02
EtOAc	581	3.73	78	628	47	1288	0.41	7.16
CHCI3	588	5.96	109	621	33	904	0.80	9.99
DCM	595	3.12	129	622	27	730	0.48	7.83
EtOH	578	3.87	77	631	53	1453	0.42	7.15
ACN	580	4.01	86	636	56	1518	0.45	7.47
DMF	582	3.36	108	643	61	1630	0.32	6.27

Table S7: Estimated coefficients (y_0 , a, b, c, d), their standard errors and correlation coefficients (r) for the multilinear analyis of (\bar{v}_{abs}), (\bar{v}_{emi}) and ($\Delta \bar{v}$) of **MCDR** as a function of Kamlet-Taft (2) and Catalan (3) solvent scales. Where, α or SA for solvent acidity, β or SB for solvent basicity, π^* for collective parameter of solvent dipolarity and polarizability in the case of Kamlet-Taft equation, SdP and SP for solvent dipolarity and polarizability respectively in the case of Catalan equation.

Kamlet-Taft	y ₀ ×10 ³	a _α	b _β	Cπ*		r
Ū _{abs}	22.84 ± 0.10	0.15 ± 0.19	0.48 ± 0.21	-0.76 ± 0.19		0.69
Ū _{emi}	20.14 ± 0.34	-0.34 ± 0.62	-0.44 ± 0.71	-1.86 ± 0.63		0.65
Δū	2.70 ± 0.34	0.49 ± 0.62	0.92 ± 0.71	1.10 ± 0.63		0.58
Catalan	y ₀ ×10 ³	a _{SA}	b _{SB}	C _{SdP}	d _{SP}	r
Ū _{abs}	23.96 ± 0.20	0.41 ± 0.20	0.40 ± 0.12	-0.41 ± 0.08	-1.81 ± 0.29	0.93

Ū _{emi}	20.04 ± 0.70	0.36 ± 0.70	0.04 ± 0.40	-2.08 ± 0.26	0.08 ± 0.99	0.92
Δū	3.92 ± 0.71	0.05 ± 0.71	0.36 ± 0.40	1.67 ± 0.26	-1.88 ± 1.00	0.89

Table S8: Estimated coefficients (y_0 , a, b, c, d), their standard errors and correlation coefficients (r) for the multilinear analyis of (\bar{v}_{abs}), (\bar{v}_{emi}) and ($\Delta \bar{v}$) of **DCMR** as a function of Kamlet-Taft (2) and Catalan (3) solvent scales. Where, α or SA for solvent acidity, β or SB for solvent basicity, π^* for collective parameter of solvent dipolarity and polarizability in the case of Kamlet-Taft equation, SdP and SP for solvent dipolarity and polarizability respectively in the case of Catalan equation.

Kamlet-Taft	y ₀ ×10 ³	aα	b _β	Cπ*		r
Ū _{abs}	21.14 ± 0.11	-0.08 ± 0.20	0.34 ± 0.23	-0.33 ± 0.20		0.03
Ū _{emi}	19.89 ± 0.23	-0.15 ± 0.42	-0.80 ± 0.48	-0.92 ± 0.42		0.67
Δū	1.25 ± 0.27	0.07 ± 0.50	1.13 ± 0.57	0.59 ± 0.51		0.57
Catalan	y ₀ ×10 ³	a _{SA}	b _{SB}	C _{SdP}	d _{SP}	r
Ū _{abs}	22.11 ± 0.20	-0.39 ± 0.20	0.32 ± 0.12	-0.05 ± 0.08	-1.55 ± 0.29	0.81
Ū _{emi}	20.03 ± 0.91	-0.18 ± 0.90	-0.32 ± 0.51	-1.16 ± 0.34	-0.19 ± 1.28	0.72
Δū	2.08 ± 0.98	-0.20 ± 0.97	0.64 ± 0.55	1.11 ± 0.37	-1.36 ± 1.38	0.70

Spectrum S1: ¹H NMR spectra of compound 2 in DMSO-d₆

Spectrum S2: ¹³C NMR spectra of compound 2 in DMSO-d₆

Spectrum S3: ¹H NMR spectra of compound 5 in DMSO-d₆

Spectrum S4: ¹³C NMR spectra of compound 5 in DMSO-d₆

Spectrum S5: ¹H NMR spectra of compound 8 in CDCl₃

Spectrum S6: ¹³C NMR spectra of compound 8 in CDCl₃

Spectrum S7: ¹H NMR spectra of compound 9 in DMSO- d_6

Spectrum S8: ¹³C NMR spectra of compound 9 in DMSO-d₆

Spectrum S9: ¹H NMR spectra of compound 3 in DMSO-d₆

Spectrum S10: ¹³C NMR spectra of compound 3 in DMSO-d₆

Spectrum S12: ¹³C NMR spectra of compound 6 in DMSO-d₆

Spectrum S13: ¹H NMR spectra of compound 10 in DMSO-d₆

Spectrum S14: ¹³C NMR spectra of compound 10 in DMSO-d₆

Spectrum S15: ¹H NMR spectra of MCMR in CDCl₃

Spectrum S17: HR-MS spectra of MCMR

Spectrum S18: ¹H NMR spectra of MCDR in DMSO-d₆

Spectrum S19: ¹³C NMR spectra of MCDR in DMSO-d₆

Spectrum S20: HR-MS spectra of MCDR

Spectrum S22: ¹³C NMR spectra of DCMR in DMSO-d₆

