Supporting Information

Evaluation of Graphene-Wrapped LiFePO₄ as Novel Cathode Materials for Li-Ion Batteries

Sungun Wi,^{†a} Jaewon Kim,^{†a} Kimin Park,^{†a} Sangheon Lee,^a Joonhyeon Kang,^a Kyung Hwan Kim,^a Seunghoon Nam,^{*b} Chunjoong Kim^{*c} and Byungwoo Park^{*a}

 ^a WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea. E-mail: byungwoo@snu.ac.kr; Tel: +82-2-880-8319; Fax: +82-2-885-9671.
^b Department of Nano Mechanics, Nano Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM),

Table S1. Carbon content and grain size of the bare LiFePO₄, graphene-wrapped commercial LiFePO₄, and graphene-wrapped LiFePO₄.

Sample	C [wt. %]	Grain Size [nm]
Bare LiFePO ₄	-	~400 (from SEM)
<i>c-</i> LiFePO₄/G	2.1	~400 (from SEM)
LiFePO₄/G	1.7	83 ± 10 (from XRD) 67 ± 25 (from SEM)

Daejeon 34103, Korea. E-mail: kwek14@kimm.re.kr; Tel: +82-42-868-7182; Fax: +82-42-868-7824.

^c School of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Korea. E-mail: ckim0218@cnu.ac.kr; Tel: +82-42-821-5635; Fax: +82-42-822-5850.

Table S2. Impedance parameters extracted using a modified Randles' equivalent circuit for the LiFePO₄/G and *c*-LiFePO₄/G. In Randles' circuit, R_s (series resistance) represents the high-frequency resistance of the electrolyte. CPE_{dl} (constant phase element) reflects imperfect capacitance of the electrochemical double layer between the electrolyte and electrode. R_{ct} (charge-transfer resistance) is associated with the ion injection and the electron transfer from the electrolyte into the electrode. Z_w is the Warburg impedance.

Parameters	<i>R_{ct}</i> [Ω g]	Warburg factor σ	D _{EIS} [× 10 ⁻¹² cm ² s ⁻¹]
LiFePO₄/G (C0)	0.0181 ± 0.0001	0.04652 ± 0.00133	143
LiFePO₄/G (C1)	0.0164 ± 0.0005	0.00687 ± 0.00014	3.1
LiFePO₄/G (C2)	0.0184 ± 0.0003	0.00621 ± 0.00058	2.5
LiFePO₄/G (C3)	0.0191 ± 0.0003	0.00625 ± 0.00014	2.6
LiFePO₄/G (C4)	0.0195 ± 0.0003	0.00629 ± 0.00035	2.6
LiFePO₄/G (C5)	0.0198 ± 0.0003	0.00638 ± 0.00052	2.7
LiFePO₄/G (C6)	0.0199 ± 0.0003	0.00665 ± 0.00072	2.9
LiFePO₄/G (C7)	0.0201 ± 0.0003	0.00731 ± 0.00079	3.5
LiFePO₄/G (C8)	0.0197 ± 0.0003	0.00892 ± 0.00093	5.2
LiFePO₄/G (C9)	0.0197 ± 0.0002	0.02432 ± 0.00023	38.5
LiFePO₄/G (C10)	0.0222 ± 0.0002	0.01744 ± 0.00141	20.1
LiFePO₄/G (D1)	0.0222 ± 0.0002	0.01744 ± 0.00141	20.1
LiFePO₄/G (D2)	0.0181 ± 0.0001	0.00348 ± 0.00003	0.8
LiFePO₄/G (D3)	0.0164 ± 0.0005	0.00388 ± 0.00004	0.9
LiFePO₄/G (D4)	0.0184 ± 0.0003	0.00433 ± 0.00004	1.2
LiFePO₄/G (D5)	0.0191 ± 0.0003	0.00487 ± 0.00003	1.6
LiFePO₄/G (D6)	0.0195 ± 0.0003	0.00554 ± 0.00002	2.1
LiFePO₄/G (D7)	0.0198 ± 0.0003	0.00637 ± 0.00002	2.7
LiFePO₄/G (D8)	0.0199 ± 0.0003	0.00753 ± 0.00003	3.7
LiFePO₄/G (D9)	0.0201 ± 0.0003	0.00931 ± 0.00006	5.7
LiFePO₄/G (D10)	0.0197 ± 0.0003	0.01248 ± 0.00009	10.3
LiFePO₄/G (D11)	0.0197 ± 0.0002	0.01965 ± 0.00003	25.4

Parameters	<i>R_{ct}</i> [Ω g]	Warburg factor σ	D _{EIS} [× 10 ⁻¹⁰ cm² s ⁻¹]
<i>c</i> -LiFePO₄/G (C0)	0.068 ± 0.017	0.289 ± 0.005	55.3
<i>c</i> -LiFePO₄/G (C1)	0.069 ± 0.001	0.226 ± 0.003	33.9
<i>c</i> -LiFePO₄/G (C2)	0.124 ± 0.045	0.055 ± 0.001	2.0
<i>c</i> -LiFePO₄/G (C3)	0.179 ± 0.009	0.056 ± 0.002	2.0
<i>c</i> -LiFePO₄/G (C4)	0.199 ± 0.016	0.008 ± 0.001	4.7
<i>c</i> -LiFePO₄/G (C5)	0.349 ± 0.026	0.182 ± 0.007	21.8
<i>c</i> -LiFePO₄/G (C6)	0.483 ± 0.003	0.211 ± 0.003	29.1
<i>c</i> -LiFePO₄/G (D1)	0.483 ± 0.003	0.211 ± 0.003	29.1
<i>c</i> -LiFePO₄/G (D2)	0.471 ± 0.016	0.107 ± 0.008	7.6
<i>c</i> -LiFePO₄/G (D3)	0.464 ± 0.027	0.116 ± 0.007	8.9
<i>c</i> -LiFePO₄/G (D4)	0.453 ± 0.029	0.129 ± 0.005	10.9
<i>c</i> -LiFePO₄/G (D5)	0.383 ± 0.012	0.137 ± 0.001	12.3
<i>c</i> -LiFePO₄/G (D6)	0.382 ± 0.011	0.136 ± 0.001	12.1
<i>c</i> -LiFePO₄/G (D7)	0.334 ± 0.009	0.152 ± 0.005	15.2

The Li-ion diffusion coefficient (D_{EIS}) from *in situ* electrochemical impedance spectra (EIS) is presented as:

$$D_{EIS} = \left(\frac{R^2 T^2}{2A^2 n^4 F^4 C_{Li}^2 \sigma^2}\right),$$
 (1)

where D_{EIS} is the diffusion coefficient (cm² s⁻¹) of Li in the low-frequency (≤ 10 Hz) region, A is the surface area of the electrode (cm² g⁻¹), n is the number of electrons, F is the Faraday constant (96485 C mol⁻¹), C_{Li} is the concentration of Li⁺ (mol cm⁻³), and σ is the Warburg factor obtained from the slope of the lines between the real axis Z' and the reciprocal square root of the lower angular frequencies $\omega^{-1/2}$ ($Z' = R_s + R_{ct} + \sigma \omega^{-1/2}$).

Figure S1. Schematic illustration showing the synthetic process for the graphene-wrapped commercial LiFePO₄.

Figure S2. (a) XRD pattern and (b) SEM image of the amorphous FePO₄ nanoparticles.

Figure S3. SEM images of the (a-b) bare $LiFePO_4$ and (c-d) graphene-wrapped commercial $LiFePO_4$.

Figure S4. XRD patterns of the bare LiFePO₄, graphene-wrapped commercial LiFePO₄, and graphene-wrapped LiFePO₄. The ideal peak positions and intensities for LiFePO₄ (JCPDS #40-1499) are marked at the bottom.

Figure S5. (a) SEM image of the graphene-eliminated LiFePO₄, and (b) grain-size distribution of the graphene-wrapped LiFePO₄.