Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Figure S1. Images of homemade setup for AChE immobilization

Figure S3. IR spetra of (A)zeolite beta, (B)AChE and (C) AChE immobilized zeolite beta

Figure S4. TEM images of blank magnetic nanoparticles(A) and AChE conjugated magnetic nanoparticles(B)

Figure S5. X-ray diffraction image of magnetic nanoparticles

Figure S7. Effect of the amount of magnetic nanoparticles added on the percentage of conjugated AChE

Figure S8. Effects of different types of zeolites, incubation time, temperature and buffer pH on the immobilized percentage of AChE, ** indicates P<0.05, as compared with pH 5.7 or 26 °C.

Figure S9. Effect of time on desorption behavior of AChE

Figure S10. Schematic illustration of the possible mechanism of adsorption and desorption behavior of the AChE on zeolite beta

Figure S11. Effect of wash times and wash solvent, ** indicates P<0.05, as compared with wash_1 or 10% methanol-water.

Figure S12. Optimization of multiple related parameters including ionic strength, pH, incubation time and temperature. ****** indicates P<0.05, as compared with pH 5.7, 5 min incubation time, 10mM ion strength or 20 °C.

Figure S14. Reusability of the AChE immobilized zeolites and AChE conjugated magnetic

nanoparticles for ten consecutive cycles

Figure S16. Chemical structures of constituents in crude extract of Corydalis yanhusuo

Figure S17. A Venn diagram demonstrating commonly and exclusively constituents by using the two SPE methods

Figure S18. MS² spectra of (A) peak 4 with *m/z* 342.1710 Da, (B) peak 5 with *m/z* 356.1866 Da, (C) peak 7 with *m/z* 354.1348 Da

Figure S19. MS² spectra of (A) peak 8 with *m/z* 356.1867 Da, (B) peak 10 with *m/z* 356.1868 Da, (C) peak 14 with *m/z* 352.1558 Da

