Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO₃ nanoparticles: a novel recyclable and excellent visible-light photocatalyst

Saeed Farhadia*, Mostafa M. Amini^b, Farzaneh Mahmoudi^a

^aDepartment of Chemistry, Lorestan University, Khoramabad 68151-44316, Iran ^bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran

*Corresponding author at:

Department of Chemistry, Lorestan University, Khoramabad 68151-44316, Iran.

Tel: +98 06633120611, fax: +98 06633120618

E-mail address: sfarhadi1348@yahoo.com (Saeed Farhadi)

Supplementary Index

Tables:

1. The structure and nature of methylene blue and methyl orange dye pollutants (S1)

Figures:

- 1. Time dependent absorption spectrum during photocatalytic reaction of MB (a) and MO (b) in the presence of LaFeO₃ nanoparticles (concentration of MB and MO= 25 mg/L, amount of catalyst = 20 mg, 2 mL of hydrogen peroxide 0.1 M, reaction temperature =25°C) (S1)
- 2. Time dependent absorption spectrum during photocatalytic reaction of MB (a) and MO (b) in the presence of PTA (concentration of MB and MO= 25 mg/L, amount of catalyst = 10 mg, 2 mL of hydrogen peroxide 0.1 M, reaction temperature =25°C) (S2)
- 3. Effect of different amounts of hydrogen peroxide on the photocatalytic degradation of MB in the presence of composite catalyst. concentration of MB= 25mg/L, amount of catalyst = 25 mg, amount of hydrogen peroxide addition, 1 mL (sample 1), 2mL (sample 2), 3 mL (sample 3), reaction temperature =25°C) (S3)
- 4. The FT-IR spectra of recovered catalyst after three cycles of photodegradation reactions (S4)

Dye name	Chemical Structure	Ionicity	Size (nm ³)	MW(g/mol)	Absorption λ max(nm)
Methylene Blue (MB)	H ₃ C, N, CH ₃ CH ₃ C, CH ₃ CH ₃ CH ₃	Cationic	1.38 0.64 0.21	319.85	664
Methyl Orange (MO)		Anionic	1.54 0.48 0.28	327.33	463

Fig. S1. UV-Vis time dependent absorption spectrum during photocatalytic reaction of MB (a) and MO (b) in the presence of LaFeO3 nanoparticles (concentration of MB and MO= 25 mg/L, amount of catalyst = 20 mg, 2 mL of hydrogen peroxide 0.1 M, reaction temperature =32°C).

Fig. S2. UV-Vis time dependent absorption spectrum during photocatalytic reaction of MB (a) and MO (b) in the presence of PTA (concentration of MB and MO= 25 mg/L, amount of catalyst = 10 mg, 2 mL of hydrogen peroxide 0.1 M, reaction temperature =32°C).

Fig. S3. Effect of different amounts of hydrogen peroxide on the photocatalytic degradation of MB in the presence of composite catalyst. concentration of MB= 25mg/L, amount of catalyst = 25 mg, amount of hydrogen peroxide addition, 1 mL (sample 1), 2mL (sample 2), 3 mL (sample 3), reaction temperature =32°C).

Fig. S4. The FT-IR spectra of recovered catalyst after three cycles of photodegradation reactions.