Supplementary data

A Simple, One-pot Synthesis of Molybdenum Oxide-Reduced Graphene Oxide Composites in Supercritical Methanol and Their Electrochemical Performance

Jieun Hwang¹, Dohyeon Yoon¹, Boyoung Kweon¹, Wonyoung Chang², Jaehoon Kim^{*,1,3}

¹ School of Mechanical Engineering, Sungkyunkwan University,

2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea

²Center for Energy Convergence, Korea Institute of Science and Technology,

Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.

³ Sungkyun Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University,

2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea

Fig. S1. SEM image of the bare MoO_2 particles

(a)

(b)

Fig. S2. SEM image of (a) MoO₂-SRGO-1 and (b) MoO₂-SRGO-3

Fig. S3. EDS mapping image of MoO₂-SRGO-2 about molybdenum (blue), oxygen (green), and carbon (red)

Sample code	a (Å)	b (Å)	c (Å)
C-MoO ₂	5.6011	4.8793	5.6100
MoO ₂ -SRGO-1	5.6862	4.8058	5.7025
MoO ₂ -SRGO-2	5.6619	4.7537	5.7332
MoO ₂ -SRGO-3	5.6641	4.7671	5.6739

Table S1. Refined lattice parameters of C-MoO₂ and MoO₂-SRGO composites.

Fig. S4. High-resolution XPS spectra of C 1s and Mo 3d for (a), (b) MoO_2 -SRGO-1 and (c), (d) MoO_2 -SRGO-3

Peaks	Peak Position (eV)	GO	SRGO	MoO ₂ - SRGO-1 (area%)	MoO ₂ - SRGO-2	MoO ₂ - SRGO-3
sp ² carbon	284.5	36.8	66.6	61.5	64.0	58.5
sp ³ carbon	285.5	0.00	6.3	19.7	13.0	17.1
С-ОН	286.0	2.89	7.4	10.3	9.2	9.2
C-O/epoxy	286.6	45.4	4.9	3.2	6.0	4.8
C=O	287.6	7.48	3.2	3.1	3.3	5.1
O=C-O	288.7	7.40	1.6	1.7	3.2	4.7
π-π* shake-up	289.9	0.00	10.0	0.5	1.3	0.6
Max1mum Fitting Error	$(\sum x^2)$	0.5032	3.5274	0.8647	0.6402	0.6155

 Table S2. C 1s XPS peak deconvolution results

Fig. S5. XPS survey scan spectra of the MoO₂-SRGO composites

Fig. S6. N_2 adsorption-desorption isotherms of (a) $MoO_2\-SRGO\-1$, (b) $MoO_2\-SRGO\-2$ and (c) $MoO_2\-SRGO\-3$

Fig. S7. Charge-discharge profile of the C-MoO₂ sample

Fig. S8 Rate performance of C-MoO₂

Fig. S9 SEM images of MoO_2 -SRGO-2 and C-MoO₂ before and after 100 cycles

Fig. S10 XRD patterns of MoO₂-SRGO-2 before and after 100 cycles