Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

A multifunctional Schiff base fluorescent sensor for Hg²⁺, Cu²⁺ and Co²⁺ ions

Yi-Wun Sie, Chin-Feng Wan, An-Tai Wu

Supplementary Data

Fig. S1. Fluorescence spectra of receptor (20 μ M) in H₂O/DMSO=1/9 (v/v) upon addition of increasing concentrations Cu²⁺

Fig. S2. Fluorescence spectra of receptor (20 μ M) in H₂O/DMSO=1/9 (v/v) upon addition of increasing concentrations Co²⁺

Fig. S4.Stern-Volmer plot

Fig. S5. The Job's plot examined between receptor L and Hg^{2+} by fluorescence.

Fig. S6. The Job's plot examined between receptor L and Cu^{2+} by fluorescence.

Fig. S7. The Job's plot examined between receptor L and Co^{2+} by fluorescence.

Fig. S8 ESI Mass [receptor $L + Hg^{2+}$]

Fig. S11. Receptor L reversible reaction in the presence of Hg^{2+} (5 equiv.) and EDTA (5 equiv.) tested.

Fig. S12. Reversibility experiment of receptor L (20 μ M) in the presence of Cu²⁺(5 equiv.) and EDTA (5 equiv.) tested.

Fig. S13. Reversibility experiment of receptor L (20 μ M) in the presence of Co²⁺ (5 equiv.) and EDTA (5 equiv.) tested.

Fig. S14. Competition experiment of receptor L towards Hg^{2+} in the presence of 5.0 equiv. of other metal ions.

Fig. S15. Competition experiment of receptor L towards Cu^{2+} in the presence of 5.0 equiv. of other metal ions.

Fig. S16. Competition experiment of receptor L towards Co²⁺ in the presence of 5.0 equiv. of other metal ions.

Fig. S17. The IR spectra for (a) receptor FT and (b) [receptor $FT + Hg^{+2}$] adduct from top to bottom.