Supplementary Information

Microwave assisted fabrication of nanostructured reduced graphene oxide $(rGO)/Fe_2O_3$ composite as a promising next generation energy storage material

Mohit Saraf^a, Kaushik Natarajan^a and Shaikh M. Mobin^{*a,b,c}

^aDiscipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol-453552, India
^bDiscipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol-453552, India
^cCentre for Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, Simrol-453552, India

*E-mail: xray@iiti.ac.in

Tel: +91 731 2438 762

Calculation of parameters

The discharge capacitance (Cs) of both the electrodes was calculated by following equation.^{1,2}

$$Cs = \frac{I}{m} \times \frac{dt}{dv}$$

Where *I* the discharge current in ampere (A) and dt/dv is the slope inverse of the discharge curve (V s⁻¹) and *m* is the mass of the active material deposited on the GCE.

The maximum energy density values were calculated from the following equation:

$$E = \frac{1}{2} \times CsVi^2$$

Where V_i is the potential window.^{1,2}

The power density was calculated by following equation:

$$P = \frac{E}{\Delta t}$$

Where Δt is the discharge time.

Fig. S1 XRD spectrum of graphene oxide (GO).

Fig. S2 EDX spectrum of rGO-Fe₂O₃ composite.

Fig. S3 Plots between energy and power densities and current density for rGO-Fe₂O₃/GCE.

References

- 1 R. A. Dar, G. A. Naikoo, P. K. Kalambate, L. Giri, F. Khan, S. P. Karna and A. K. Srivastava, *Electrochim. Acta*, 2015, **163**, 196-203.
- 2 M. Saraf, R. A. Dar, K. Natarajan, A. K. Srivastava and S. M. Mobin, *ChemistrySelect*, 2016, 1, 2826-2833.