Supplementary Information

Enhanced p-Cresol Photodegradation over $\mathrm{BiOBr} / \mathrm{Bi}_{2} \mathrm{O}_{3}$ in the Presence of Rhodamine B

Aijuan Han, Jiulong Sun, Gaik Khuan Chuah* and Stephan Jaenicke*

Department of Chemistry, National University of Singapore, 3 Science Drive 3,

Singapore 117543, Singapore

NUS Environmental Research Institute, National University of Singapore, 5 A

Engineering Drive 1, \#02-01, Singapore 117411, Singapore

Fig. S1. Band structures of (a) $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and (b) BiOBr .

Fig. S2. Total and partial density of state of (a) $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and (b) BiOBr calculated using CASTEP program package.

Fig. S3. Weight percentage of BiOBr and $\mathrm{Bi}_{2} \mathrm{O}_{3}$ as a function of $\mathrm{HBr}: \mathrm{Bi}_{2} \mathrm{O}_{3}$ molar ratio.

Fig. S4. Degradation of RhB and p-cresol singly and in mixtures under (a) blue and (b) green and (c) red LED light using $85 \% \mathrm{BiOBr} / \mathrm{Bi}_{2} \mathrm{O}_{3}$ as catalyst.

Fig. S5. Determination of pH at point of zero charge for $85 \% \mathrm{BiOBr} / \mathrm{Bi}_{2} \mathrm{O}_{3}$ composite. Procedure:

To find the pH at the point of zero charge $\left(\mathrm{pH}_{\mathrm{PZC}}\right), 0.01 \mathrm{~g}$ of the sample was placed in 10 ml of 0.1 M NaCl with the initial pH adjusted from 2.0 to 12.0 with either 0.1 $\mathrm{mol} / \mathrm{L} \mathrm{HCl}$ or NaOH . After equilibration, the final pH was determined and the $\mathrm{pH}_{\text {PZC }}$ was obtained from the plateau in the plot of $\mathrm{pH}_{\text {final }}$ versus $\mathrm{pH}_{\text {initial. }}{ }^{[\mathrm{S} 1]}$
[S1] L. Xiao, W. Ma, M. Han, Z. Cheng, J. Hazard. Mater. 186 (2011) 690-698.

Fig. S6. Fluorescence spectrum of terephthalic acid solution under different illumination time in the presence of $85 \% \mathrm{BiOBr} / \mathrm{Bi}_{2} \mathrm{O}_{3}$.

Fig. S7. Pseudo first-order rate constant for p-cresol and RhB with addition of KBrO_{3}, tert-butanol, EDTA as scavengers for $\cdot \mathrm{O}_{2}^{-}, \cdot \mathrm{OH}$, and holes, respectively. $21 \mu \mathrm{~mol}$ of the scavenger was added to 100 ml solutions containing $20 \mathrm{ppm} \mathrm{RhB}, 24 \mathrm{ppm} p$ cresol or mixtures of both under visible light irradiation. Photocatalyst: 85\% $\mathrm{BiOBr} / \mathrm{Bi}_{2} \mathrm{O}_{3}$.

Fig. S8. UV-vis spectral changes of RhB in the presence of p-cresol and Fe^{3+} as a function of reaction time under visible light irradiation.

Fig. $\mathbf{S 9}$ (a) Reuse of $85 \% \mathrm{BiOBr} / \mathrm{Bi}_{2} \mathrm{O}_{3}$ in RhB degradation.

Fig. $\mathbf{S 9}$ (b) XRD patterns of $85 \% \mathrm{BiOBr} / \mathrm{Bi}_{2} \mathrm{O}_{3}$ before and after four runs.

