## **Electronic Supplementary Information**

## Facile synthesis of low-cost biomass-based γ-Fe<sub>2</sub>O<sub>3</sub>/C for efficient adsorption and catalytic degradation of methylene blue in aqueous solution

Tao Chen, YuhaoXiong, Yuemei Qin, Haiguan Yang, Peng Zhang and Fanggui Ye\*

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, P. R. China.



Fig.S1 (a) TGA curves of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>/C, the FeCl<sub>3</sub> impregnation ratio was (a) 2:1; (b) 1.5:1; (c) 0.5:1; (d) 0:1;

(b) Magnetization curves of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>/C (the FeCl<sub>3</sub> impregnation ratio=0.5:1; the carbonization time=4 min).



Fig.S2 a) Influence of the proportion of impregnation. b) Influence of the carbonization time. ( $C_{MB}$ : 50 mg L<sup>-1</sup>; T: 30  $^{0}$ C; pH: 7; the dosages of adsorbent: 10 mg)



Fig.S3 Influence of pH value of the adsorption system. Insert: a series soak solution of different pH.( the dosages of adsorbent: 10 mg; C<sub>MB</sub>: 200 mg L-1; T: 30 30 <sup>0</sup>C)



Fig.S4 The pseudo-second-order model of adsorption of MB at 30 °C.( pH: 7; the dosages of adsorbent: 10 mg)



Fig.S5 The recycling performance of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>/C. (C<sub>MB</sub>: 50 mg L<sup>-1</sup>; T: 30 °C; pH: 7; the dosages of adsorbent: 10 mg)



Fig.S6 Effect of different reaction conditions of degradation with MB (100 mg L<sup>-1</sup>) at 30 °C:

a) pH (the dosages of catalyst: 5 mg; NH<sub>2</sub>OH: 10 mmol L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>: 1 mol L<sup>-1</sup>);

b) the concentration of  $H_2O_2$  (the dosages of catalyst: 5 mg; NH<sub>2</sub>OH: 10 mmol L<sup>-1</sup>; pH: 7);

c) the concentration of NH<sub>2</sub>OH; (the dosages of catalyst: 5 mg; H<sub>2</sub>O<sub>2</sub>: 3 mol L<sup>-1</sup>; pH: 7);

d) the dosages of catalyst (pH: 7; NH<sub>2</sub>OH: 10 mmol L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>: 3 mol L<sup>-1</sup>)



Fig.S7 The recycling performance of the catalytic. Insert: the stability of catalytic after 5 cycles. ( $C_{MB}$ : 50 mg L<sup>-1</sup>; T: 30; pH: 7; the dosages of adsorbent: 10 mg; NH<sub>2</sub>OH: 10 mmol L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>: 3 mol L<sup>-1</sup>)

Table S1 Porosity analysis of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>/C

|                                     | BET Surface area | Average pore diameter | Total pore volumes |  |
|-------------------------------------|------------------|-----------------------|--------------------|--|
| γ-re <sub>2</sub> O <sub>3</sub> /C | $(m^2 g^{-1})$   | (nm)                  | $(cm^3 g^{-1})$    |  |
| 1                                   | 764.12           | 2.81                  | 0.54               |  |
| 2                                   | 114.78           | 3.41                  | 0.12               |  |

Notes: the FeCl<sub>3</sub> impregnation ratio and carbonization time of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>/C-1 and 2 were 0.5:1, 2:1, and 4 min, 4min, respectively.

**Table S2** Correlation coefficients of the dynamic equation at 30 °C and pH 7. (the dosages of adsorbent: 10 mg; the preparation condition of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>/C: FeCl<sub>3</sub>·6H<sub>2</sub>O to bagasse ratio=0.5:1 (g g<sup>-1</sup>); microwave processing time=4 min)

| Pollutant |                       | $q_{e(exp)}$ (mg g <sup>-1</sup> ) | Pseudo-second-order kinetic model |                           |                       |
|-----------|-----------------------|------------------------------------|-----------------------------------|---------------------------|-----------------------|
|           | $C_0 (\text{mg L}^3)$ |                                    | $q_{e(cal)}(mg g^{-1})$           | $k_2(g mg^{-1} min^{-1})$ | <b>R</b> <sup>2</sup> |
| MB        | 800                   | 352.96                             | 362.31                            | 1.890×10-3                | 0.998                 |
|           | 400                   | 199.75                             | 200.40                            | 2.546×10-2                | 0.999                 |
|           | 200                   | 96.71                              | 97.85                             | 1.523×10 <sup>-2</sup>    | 0.999                 |
|           | 100                   | 48.90                              | 50.58                             | 1.021×10-2                | 0.997                 |
|           | 50                    | 24.94                              | 25.11                             | 1.495×10 <sup>-1</sup>    | 0.999                 |

Notes: C<sub>0</sub>, initial concentration of MB; q<sub>e(exp)</sub>, experimental adsorption capacity, q<sub>e(cal)</sub>; calculated adsorption capacity; k<sub>2</sub>, pseudo-second-order kinetic constant.

| Sample                                                                       | Adsorption capacity<br>(mg g <sup>-1</sup> ) | Degradation efficiency                                               | References |
|------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|------------|
| Mesoporous organosilicon<br>(BC-60)                                          | 556                                          |                                                                      | [13]       |
| Porous functional carbon<br>material<br>(HPFCMS-5-1-800)                     | 385.12                                       |                                                                      | [15]       |
| ZnCl <sub>2</sub> -molten salt synthesis<br>(MSS)                            | 353.1                                        |                                                                      | [18]       |
| Peanut shell magnetic carbon<br>(PMC-2)                                      |                                              | 90 % (Time $\leq$ 30 min; C <sub>MB</sub> = 40 mg g <sup>-1</sup> )  | [19]       |
| Manganese oxide<br>(MO)                                                      |                                              | 99 % (Time $\leq$ 10 min; C <sub>MB</sub> = 100 mg g <sup>-1</sup> ) | [22]       |
| Graphene oxide-iron(III)<br>based cellulose nanofibril<br>(30 % GO-Fe-CNF)   | 143.96                                       | 30.4 % (Time $\leq$ 24 h; C <sub>MB</sub> = 100 mg g <sup>-1</sup> ) | [23]       |
| Fe-based<br>metal-organic framework<br>(γ-Fe <sub>2</sub> O <sub>3</sub> /C) | 303.95                                       |                                                                      | [26]       |
| Biomass-based $\gamma$ -Fe <sub>2</sub> O <sub>3</sub> /C                    | 352.96                                       | 99 % (Time $\leq$ 30 min; C <sub>MB</sub> = 100 mg g <sup>-1</sup> ) | This work  |

Table S3 Comparison of the adsorption capacity and degradation efficiency of various adsorbents for MB.