Supporting Information

Bioisosteric modification of known fucosidase inhibitors to discover a novel inhibitor of α-L-fucosidase

Chandramohan Bathula ${ }^{1,}$, Shreemoyee Ghosh ${ }^{2, ~}{ }^{\text {s }}$, Santanu Hati ${ }^{1}$, Sayantan Tripathi ${ }^{3}$, Shailja Singh ${ }^{3}$, Saikat Chakrabarti ${ }^{2}$, Subhabrata Sen ${ }^{1, *}$
${ }^{1}$ Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Tehsil Dadri, Chithera,Uttar Pradesh 201314, India
${ }^{2}$ Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata, West Bengal 700032, India
${ }^{1}$ Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Tehsil
Dadri, Chithera,Uttar Pradesh 201314, India

Contents

1. Chemistry Experimental
2. Ramachandran Plot-Figure S1
3. Preference of binding at the N terminal domain of bacterial α-L-fucosidase-

Figure S2
4. COS cell cytotoxicity studies of the most potent compounds-Table S1
5. MCF7 screening of compounds $\mathbf{4 a}, \mathbf{b}, \mathbf{e}$ and \mathbf{f}-Table S2
6. Spectra

Experimental

General

Unless otherwise noted, all reactions were carried out in flame-dried glassware under a static nitrogen atmosphere with anhydrous solvent. All reagents were purchased from Sigma Aldrich, Acros or Alfa Aesar. Solvents were treated with $4 \AA$ molecular sieves or sodium and distilled prior to use. Purifications of reaction products by washing with diethyl ether. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature unless otherwise indicated Bruker 500 and 400 MHz 120 and 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). The Mass Spectrometry analysis was done on the 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies) equipped with Agilent 1290 LC system obtained by the Dept. of Chemistry, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 203207, India

General procedure for the knoevenagel condensation 6-methylfuro[3,4-

 c]pyridine-3,4(1H,5H)-dione and appropriate aldehydes.To a stirred solution of 6-methylfuro[3,4-c]pyridine-3,4($1 \mathrm{H}, 5 \mathrm{H}$)-dione ($0.2 \mathrm{~g}, 1.0 \mathrm{eq}$.) in ethanol (5 mL) added piperidine (0.1eq.), followed by corresponding aldehyde (1.1 eq.) under N_{2} atmosphere pre-tared vial at room temperature, then the reaction mixture stirred at $80^{\circ} \mathrm{C}$, once TLC indicated complete consumption of the starting material (about 6 hours) allowed to cool to room temperature the resulting precipitate filter and washed with diethyl ether ($2 \times 10 \mathrm{~mL}$) to get substituted 6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-diones.

General procedure for the synthesis of c-4/c5 substituted thiophene 2 aldehydes.

To a stirred solution of 4-bromothiophene-2-carbaldehydes/5-bromothiophene-2carbaldehydes (1 eq.) in 1, 4-dioxane (10 mL), added corresponding arylboronic acids (1.2 eq.) followed by aqueous (2 M) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq.) then purged with argon gas for 15 min and then bis(triphenylphosphine) palladium(II) dichloride (0.05 eq .) was added. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$, once TLC indicated complete
consumption of the starting material (about 14 hours), the reaction mixture was allowed to cool to room temperature filtered through celite, quenched with 20 volumes of brine solution, extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered evaporated to dryness to give the crude c-4/c5 substituted thiophene 2 aldehydes which were used for synthesis of $4 \mathrm{~d}, 4 \mathrm{e}, 4 \mathrm{f}$ and 5 e .

(Z)-6-methyl-1-((1-methyl-1H-indol-3-yl)methylene)furo[3,4-c]pyridine$\mathbf{3 , 4 (1 H , 5 H})$-dione (4a)

Following the general protocol 1-methyl-1H-indole-3-carbaldehyde ($212 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded $\mathbf{4 a}$ in 363 mg (yield 98\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 11.97$ (br. s, 1H), 8.04 (s, 1H), 8.03 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (s, 1H), 7.317.28 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26-7.23 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (s, 3H), ${ }^{13}$ C NMR (125 MHz; DMSO-d6): $\delta 164.35,158.08,155.28,153.91,138.86$, 136.49, 133.84, 127.01, 122.71, 120.83, 118.89, 110.63, 108.19, 105.93, 103.12, 96.48, 33.10, 19.57. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ 307.1004, found 307.1003.

(Z)-1-(benzo[b]thiophen-3-ylmethylene)-6-methylfuro[3,4-c]pyridine$\mathbf{3 , 4 (1 H , 5 H)}$-dione (4b)

Following the general protocol benzo[b]thiophene-3-carbaldehyde ($168 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 4b in 359 mg (yield 96\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 9.54$ (s, 1H), 9.22 (s, 1H), 8.97 (s, 1H), 8.76 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.98 ($\mathrm{s}, 1 \mathrm{H}), 7.79$ (s, 1H), 7.60 (s, 1H), 3.89 (s, 3H), ${ }^{13} \mathrm{C}$ NMR (125 MHz; DMSO-d6): δ 164.10, 158.29, 156.52, 155.90, 144.10, 139.34, 138.41, 131.73, 128.24, 125.68, 125.35, 123.61, 122.39, 106.02, 103.16, 99.74, 20.22. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}\right)$ 310.0460 , found 310.0443 .

(Z)-1-(3,5-difluorobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (4c)

Following the general protocol 3,5-difluorobenzaldehyde (189 mg, 1.1 eq .) afforded 4c in 262 mg (yield 75\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 12.36$ (br. s, 1H), 7.44 (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35-7.31 (m, 1H), 6.95 (s, 1H), 6.69 (s, 1H), 2.35 (s, 3H), ${ }^{13} \mathrm{C}$ NMR (125 MHz; DMSO-d6): $\delta 168.21,158.00,156.47,156.26,143.69,130.88$,
128.11, 118.99, 118.76, 109.32, 106.00, 97.23, 20.07 HRMS (ESI): $[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$ calculated for $\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{NO}_{3}\right)$ 290.0550, found 290.0551.

(Z)-6-methyl-1-((5-(pyridin-3-yl)thiophen-2-

 yl)methylene)furo[3,4c]pyridine3,4(1H,5H)-dione (4d)Following the general protocol 5-(pyridin-3-yl)thiophene-2-carbaldehyde (252 mg , 1.1 eq.) afforded 4d in 317 mg (yield 78\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 12.22$ (s, 1H), 8.99 (s, 1H), 8.55 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (d, $J=8 \mathrm{~Hz}$, 1H), 7.52 (s, 1H), 7.51-7.47 (t, J = $11 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (s, 1H), 6.73 (s, 1H), 2.34 (s, 3H), ${ }^{13}$ C NMR (125 MHz ; DMSO-d6): δ 185.00, 168.95, 167.24, 158.40, 154.97, $144.57,143.98,141.39,140.83,139.22,128.85,127.25,108.96,100.07,22.29$. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)$ 337.0647, found 337.0641.

(Z)-1-((5-(6-methoxypyridin-3-yl)thiophen-2-yl)methylene)-6-methylfuro[3,4-c]pyridine-3,4
 ($1 \mathrm{H}, 5 \mathrm{H}$)-dione (4e)

Following the general protocol 5-(6-methoxypyridin-3-yl)thiophene-2-carbaldehyde ($292 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded $\mathbf{4 e}$ in 364 mg (yield 82%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSOd6): $\delta 10.65$ (br. s, 1H), 8.56 (s, 1H), 8.05 (d, $J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (s, 1H), 7.46 (s, 1H), 7.32 (s, 1H), 6.90 (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}$), 6.69 (s, 1H), 3.89 (s, 3H), 2.31 (s, 3H), ${ }^{13} \mathrm{C}$ NMR (125 MHz; DMSO-d6): δ 163.60, 163.46, 157.75, 156.47, 155.26, 145.28, 143.71, 140.51, 136.57, 134.83, 133.49, 124.48, 123.23, 111.06, 106.08, 105.40, 96.70, 53.52, 19.64. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right) 367.3974$, found 367.0976.

(Z)-6-methyl-1-((4-phenylthiophen-2-yl)methylene)furo[3,4-c]pyridine$\mathbf{3 , 4 (1 H , 5 H)}$-dione (4f)

Following the general protocol 4-phenyl-thiophene-2-carbaldehyde ($248 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded $\mathbf{4 f}$ in 324 mg (yield 80\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 12.17$ (br. s, 1H), 8.14 (s, 1H) 7.80 ($\mathrm{s}, 1 \mathrm{H}$), 7.69 (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (t, $J=5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}$), 6.68 (s, 1H), 2.34 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz} ;$ DMSO-d6): δ 164.11, 158.23, 156.01, 155.72, 142.27, 141.61, 137.00, 134.80, 130.56, 129.58, 128.14, 127.55, 126.55, 106.31, 106.15, 97.24, 20.15. HRMS (ESI) m/z: [M+ H]+ calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}\right)$ 336.0989, found 336.0980.

General procedure for the knoevenagel condensation 2-thioxoimidazolidin-4-one and appropriate aldehydes

To a stirred solution of 2-thioxoimidazolidin-4-one ($200 \mathrm{mg}, 1.0 \mathrm{eq}$.) in ethanol (5 mL) added piperidine (0.1eq.), followed by corresponding aldehyde (1.1 eq.) under N_{2} atmosphere in a pre-tared vial at room temperature, then the reaction mixture stirred at 80° C, reaction monitored by TLC, once TLC indicated complete consumption of the starting material allowed to cool to room temperature the resulting precipitate filter and washed with diethyl ether ($2 \times 10 \mathrm{~mL}$) to get substituted 2-thioxoimidazolidin-4-ones.

(Z)-2-thioxo-5-((1-tosyl-1H-indol-3-yl)methylene)imidazolidin-4-one (5a)

Following the general protocol 1-tosyl-1H-indole-3-carbaldehyde ($556 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 5a in 583 mg (yield 85\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO-d6): $\delta 12.40$ (br. s, 2H), 8.82 ($\mathrm{s}, 1 \mathrm{H}$), 7.99-7.95 (m, 3H), 7.86 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44-7.33 (m, 4H), 6.62 (s, 1H), 2.20 (s, 3H), ${ }^{13} \mathrm{C}$ NMR (100 MHz; DMSO-d6): $\delta 179.25,165.85,146.32$, 134.25, 134.14, 130.83, 129.92, 128.15, 127.49, 127.40, 126.14, 124.54, 120.01, 114.79, 113.62, 100.53, 21.51. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O} 3 \mathrm{~S} 2\right)$ 399.0628, found 399.0624.

(Z)-5-(3,5-difluorobenzylidene)-2-thioxoimidazolidin-4-one (5b)

Following the general protocol 3,5-difluorobenzaldehyde ($269 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 5b in 380 mg (yield 92\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz; DMSO-d6): δ 7.75-7.72 (m, 2H), 6.99-6.93 (m, 1H), 5.96 (s, 1H), ${ }^{13}$ C NMR ($100 \mathrm{MHz} ;$ DMSO-d6): δ 184.18, 172.14. 163.61, 163.47, 161.19, 161.05, 144.15, 140.13, 111.86, 111.79, 111.67, 111.60, 104.09, 101.53, 101.27, 101.01. HRMS (ESI): $[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{OS}\right)$ 241.0242, found 241.0239.

(Z)-5-((4-bromothiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (5c)

Following the general protocol 4-bromothiophene-2-carbaldehyde ($359 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 5c in 446 mg (yield 90\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 9.38$ (br. s, 2H), 7.98 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (s, 1H), 7.59 (s, 1H). ${ }^{13} \mathrm{C}$ NMR (125 MHz ; DMSO-d6): $\delta 179.84,174.27,140.30,133.98,129.24,127.69,120.80,110.61$. HRMS (ESI): [M + H] ${ }^{+}$calculated for $\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrN}_{2} \mathrm{OS}_{2}\right)$ 288.9027, found 288.9025.

(Z)-5-benzylidene-2-thioxoimidazolidin-4-one (5d)

Following the general protocol benzaldehyde (201 mg , 1.1 eq.) afforded $5 \mathbf{5 d}$ in 344 mg (yield 98\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz; DMSO-d6): $\delta 6.68$ (d, J = $8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.41-6.34 (m, 3H), 5.45 (s, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz; DMSO-d6): δ 179.54, 166.12, 132.57, 130.36, 129.54, 129.04, 128.06, 111.93. HRMS (ESI) m/z: [M + H]+ calculated for ($\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{OS}$) 205.0430, found 205.0432.
(Z)-5-((5-(pyridin-3-yl)thiophen-2-yl)methylene)-2-thioxoimidazolidin-4-one (5e) Following the general protocol 5-(pyridin-3-yl)thiophene-2-carbaldehyde (359 mg , 1.1 eq.) afforded $\mathbf{5 e}$ in 420 mg (yield 85%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 9.34$ (br. s, 2H), 8.96 (d, $J=11 \mathrm{~Hz}, 1 \mathrm{H}$), $8.55(\mathrm{~d}, ~ J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.83 (d, J = $12 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.62$ (m, 1H), 7.49-7.46 (m, 1H), ${ }^{13}$ C NMR (125 MHz; DMSO-d6): 179.93, 174.31, 149.24, 146.24, 143.56, 139.28, 134.22, 132.85, 129.02, 128.36, 126.62, 124.20, 121.78. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}\right)$ 288.0187, found 288.0188.

(Z)-5-(3, 4-dimethoxybenzylidene)-2-thioxoimidazolidin-4-one (5f)

Following the general protocol 3,4-dimethoxybenzaldehyde ($315 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 5 f in 432 mg (yield 95\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO-d6): 9.35 (br. s, 1H), 9.08 (br. s, 1H), 7.55 (s, 1H), 7.17-7.09 (m, 3H), 3.81 (s, 6H), ${ }^{13} \mathrm{C}$ NMR (500 MHz ; DMSO-d6): δ 150.54, 149.38, 129.96, 127.20, 127.09, 123.33, 113.21, 112.55, 100.00, 56.15, 55.94. HRMS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)$ 265.0641, found 265.0643.

General procedure for the knoevenagel condensation between imidazolidine-2, 4dione andappropriate aldehydes

To a stirred solution of imidazolidine-2, 4-dione ($200 \mathrm{mg}, 1.0$ eq.) in ethanol (5 mL) added piperidine (0.1eq.), followed by corresponding aldehyde (1.1 eq.) under N_{2} atmosphere in a pre-tared vial at room temperature, then the reaction mixture stirred at $80^{\circ} \mathrm{C}$, reaction monitored by TLC, once TLC indicated complete consumption of the starting material allowed to cool to room temperature the resulting precipitate
filter and washed with diethyl ether ($2 \times 10 \mathrm{~mL}$) to get substituted imidazolidine-2, 4diones.

(Z)-5-(4-nitrobenzylidene)imidazolidine-2,4-dione (6a)

Following the general protocol 4-nitrobenzaldehyde ($332 \mathrm{mg}, 1.1$ eq.) afforded $\mathbf{6 a}$ in 346 mg (yield 75\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO-d6): $\delta 11.16$ (br. s, 2H), 8.19 (d, $J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.48 (s, 1H), ${ }^{13} \mathrm{C}$ NMR (100 MHz; DMSO-d6): δ 165.71, 156.23, 146.65, 140.47, 131.32, 130.57, 124.15, 105.60. HRMS (ESI) m/z: [M - H] calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$ 232.0437, found 232.0435.

(Z)-5-(pyridin-4-ylmethylene)imidazolidine-2,4-dione (6b)

Following the general protocol isonicotinaldehyde ($235 \mathrm{mg}, 1.1$ eq.) afforded $\mathbf{6 b}$ in 299 mg (yield 80\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 8.51$ (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (d, $J=5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.16 (s, 1H), ${ }^{13} \mathrm{C}$ NMR (125 MHz; DMSO-d6): $\delta 167.83,158.81$, 149.77, 149.25, 141.45, 123.29, 122.99, 102.33. HRMS (ESI) m/z: [M - H] calculated for $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ 188.0538, found 188.0534.

(Z)-5-(3, 5-difluorobenzylidene)imidazolidine-2,4-dione (6c)

Following the general protocol 3, 5-difluorobenzaldehyde ($300 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 6c in 333 mg (yield 75\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO-d6): $\delta 11.38$ (s, 1H), 10.74 (s, 1H), 7.41-7.38 (m, 2H), 7.21-7.15 (m, 1H), 6.41 (s, 1H), ${ }^{13} \mathrm{C}$ NMR (125 MHz ; DMSO-d6): $\delta 179.93,149.24,146.24,143.56,139.29,134.22,132.85,129.03$, 128.36, 126.62, 124.21, 121.78. HRMS (ESI) m/z: [M - H] calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ 223.0397, found 223.0392.

(Z)-5-(4-(dimethylamino)benzylidene)imidazolidine-2,4-dione (6d)

Following the general protocol 4-(dimethylamino)benzaldehyde ($382 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 6d in 361 mg (yield 79\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 11.05$ (s, 1H), 10.27 ($\mathrm{s}, 1 \mathrm{H}$), 7.48 (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~s}$, 6 H), ${ }^{13} \mathrm{C}$ NMR (125 MHz; DMSO- d6): δ 165.71, 155.57, 150.22, 131.00, 123.87, 120.26, 111.94, 111.08, 110.34. HRMS (ESI-TOF) m/z: [M - H] calculated for $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ 230.1008, found 230.1005.

(Z)-5-benzylideneimidazolidine-2,4-dione (6e)

Following the general protocol benzaldehyde (232 mg , 1.1 eq.) afforded $\mathbf{6 e}$ in 290 mg (yield 78\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6): $\delta 11.26$ (br. s, 1H), 10.56 (br. s, 1H), 7.61 (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41-7.38 (m, 2H), 7.34-7.30 (m, 1H), $6.42(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz; DMSO-d6): $\delta 165.62,155.77,133.01,129.43,128.82,128.42,128.00,108.35$. HRMS (ESI-TOF) m / z : $[\mathrm{M}-\mathrm{H}]$ calculated for $\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ 187.0572, found 187.0570.

(Z)-5-((1-tosyl-1H-indol-3-yl)methylene)imidazolidine-2,4-dione (6f)

Following the general protocol 1-tosyl-1H-indole-3-carbaldehyde ($650 \mathrm{mg}, 1.1 \mathrm{eq}$.) afforded 6 f in 424 mg (yield 76\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz ; CD ${ }_{3} \mathrm{OD}$): $\delta 8.40$ (s, 1H), 7.89 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.20 (m, 4H), 6.58 (s, 1H), 2.23 (s, 3H), ${ }^{13}$ C NMR (100 MHz; DMSO-d6): δ 179.26, 165.86, $146.34,134.25,134.14,130.85,129.92$, 128.14, 127.50, 127.42, 126.15, 124.55, 120.02, 114.79, 113.62, 100.54, 21.51. HRMS (ESI-TOF) m/z: [M - H] calculated for $\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right)$ 380.0711, found 380.0714.

B
spIQ2KIMOIFUCO/1-244
spIQ2KIMOIFUCO/1-244
2zxd_A/1-259
splQ2KIMOIFUCO/1-244
2zxd_A/1-259

Figure S1. Stereo-chemical properties of the three dimensional (3D) homology model of Bos taurus α -L-fucosidase catalytic N -terminal region (residues 60-311). Panel A shows the Bos taurus α-Lfucosidase catalytic N-terminal model (colour: golden yellow) superimposed with Thermotoga maritima α-L-fucosidase template (colour: cyan) with a RMSD of 0.483Å. Panel B shows the alignment between the N -terminal sequences of Bos taurus α-L-fucosidase and Thermotoga maritima α-L-fucosidase. The loop marked in pink in panel A corresponds to the pink region in panel B which is missing in the Bos taurus α-L-fucosidase catalytic N -terminal model. Conserved residues (sequence identity: 35.02%) are marked in blue boxes whereas the active site residues are shown in red boxes. Panel C shows the Ramachandran plot statistics, which indicate that the model has 99.6% residues in allowed regions.

Figure S2:

Figure S2. Preference of binding at the \mathbf{N} terminal domain of bacterial α-L-fucosidase (PDB ID: 2ZX5). The bar represents the average PatchDock score while the red dot represents the number of solutions docked at N and C terminal domains, respectively. Panel A shows the number of solutions and average PatchDock score for N and C terminal domains with regard to all PatchDock solutions. Among all PatchDock solutions, 97 solutions were observed to bind at the N -terminal with an average PatchDock score of 3695.5 while 3 solutions were seen to bind at the C-terminal with an average PatchDock score of 3617.3. Panel B, on the other hand, shows the number of solutions and average PatchDock score for solutions docked to N and C terminal domains when only solutions from the top three clusters were considered. The top 3 clusters contain the largest number of solutions with highest average PatchDock score. Considering the top three clusters only, all 79 solutions were seen to bind at the N terminal domain with an average score of 3708.5 while none were found to bind at the C terminal.

Table S1: COS cell cytotoxicity studies

Compound 4d	Concentration ($\mu \mathrm{M}$)	O.D 1	O.D 2	avg	ctrl-avg	/ctrl	*100 or \% inhibition
	control	0.745	0.713	0.729	0	0	0
	50	0.727	0.784	0.7555	-0.0265	-0.03635	-3.635116598
	25	0.731	0.763	0.747	-0.018	-0.02383	-2.382528127
	12.5	0.708	0.714	0.711	0.018	0.024096	2.409638554
	6.25	0.779	0.788	0.7835	-0.0545	-0.07665	-7.665260197
	3.125	0.764	0.741	0.7525	-0.0235	-0.02999	-2.999361838
	1.56	0.905	0.873	0.889	-0.16	-0.21262	-21.26245847
	0.78	0.688	0.652	0.67	0.059	0.066367	6.636670416
	0.39	0.74	0.679	0.7095	0.0195	0.029104	2.910447761
	0.195	0.89	0.773	0.8315	-0.1025	-0.14447	-14.44679352
$\begin{gathered} \hline \text { Compound } \\ 4 e \\ \hline \end{gathered}$		O.D 1	O.D 2	avg	ctrl-avg	/ctrl	*100 or \% inhibition
	control	1.15	1.321	1.2355	0	0	0
	50	1.11	1.22	1.165	0.0705	0.057062	5.706191825
	25	1.191	1.321	1.256	-0.0205	-0.01659	-1.659247268
	12.5	1.223	1.334	1.2785	-0.043	-0.0348	-3.480372319
	6.25	1.102	1.213	1.1575	0.078	0.063132	6.313233509
	3.125	1.534	1.423	1.4785	-0.243	-0.19668	-19.66815055
	1.56	1.089	1.039	1.064	0.1715	0.13881	13.88101983
	0.78	1.05	1.071	1.0605	0.175	0.141643	14.16430595
	0.39	1.068	1.088	1.078	0.1575	0.127479	12.74787535
	0.195	1.121	1.342	1.2315	0.004	0.003238	0.323755565
$\begin{gathered} \hline \text { Compound } \\ 4 f \end{gathered}$		O.D 1	O.D 2	avg	ctrl-avg	/ctrl	*100 or \% inhibition
	control	1.039	1.259	1.149	0	0	0
	50	0.437	0.391	0.414	0.735	0.639687	63.96866841
	25	0.651	0.602	0.6265	0.5225	0.454743	45.4743255
	12.5	0.701	0.718	0.7095	0.4395	0.382507	38.25065274
	6.25	0.679	0.654	0.6665	0.4825	0.41993	41.99303742
	3.125	0.598	0.612	0.605	0.544	0.473455	47.34551784
	1.56	0.811	0.795	0.803	0.346	0.301131	30.11314186
	0.78	0.914	0.879	0.8965	0.2525	0.219756	21.97563098
	0.39	0.899	0.876	0.8875	0.2615	0.227589	22.7589208
	0.195	0.78	0.896	0.838	0.311	0.27067	27.0670148

Table S2: MCF 7 screening of compounds 4a, b, e and \mathbf{f}

	O.D1	O.D2	O.D3	AVG	CTRL-TEST	CTRL- TEST/CTRL	*100
CONTROL	1.093	1.012	1.21	1.105	0	0	
eto	0.107	0.24	0.312	0.1735	0.9315	0.842986425	84.29864
$\mathbf{4 a}$	0.555	0.558	0.558	0.558	0.547	0.495022624	49.50226
$\mathbf{4 b}$	0.449	0.425	0.439	0.437667	0.667333333	0.603921569	60.39216
$\mathbf{4 e}$	0.457	0.44	0.362	0.419667	0.685333333	0.620211161	62.02112
$\mathbf{4 f}$	0.216	0.183	0.101	0.166667	0.938333333	0.849170437	84.91704

Compound 4a

Compound 4b

AAJ-A16048-059-C
DMSO

Compound 4c

Compound 4d

Compound $\mathbf{4 e}$

Compound $\mathbf{4 f}$

Compound 5a

Compound 5b

Compound 5c

Compound 5d

Compound 5e

```
&mple Namo :
Solvent: dmao
Dater Aug 1 2014 MEM-3
Request No: 021408M1091_protos
```


Compound 5f

Compound 6a

Compound 6b

Compound 6c

Compound 6d

Compound 6e

Compound $6 f$

