Synthesis of Quaternary Phosphonium N-chloramine

Biocides for Antimicrobial Application

Lingdong Li, ^{*}^a Hao, Zhou, ^b Fangyuan Gai^a, Xiaofang Chi,^a Yuebiao, Zhao, Fengxiang Zhang, ^a Zongbao Zhao (Kent)^c

Contents

1 Synthesis protocol of 15 and 16	2
2 NMR spectra analysis of 15 and 16	2
3 References	4
4 Original NMR data	5

1. Synthesis protocol of 15 and 16

Scheme S1 Synthesis route of compound 15

Synthesis procedure of compound **15** was quite similar to QA *N*-Chloramines **1**, ^[1] so we herein only present the ¹H NMR data of **15** and **16**.

2. NMR spectra analysis of 15 and 16

Fig. S1 ¹H NMR spectra of compound 16

Compound **16** ¹H NMR (D₂O, 500 MHz, δ) 3.51 (t, *J* = 6.5 Hz, 2H), 3.09-3.18 (m, 8H), 1.92-2.01 (m, 2H), 1.49-1.60 (m, 6H), 1.35 (s, 6H), 1.22-1.33 (m, 6H), 0.86 (t, *J* = 7.5 Hz, 9H); ¹³C NMR (D₂O, 126 MHz, δ) 180.7, 157.0, 59.3, 58.5, 55.3, 35.4, 23.6, 23.3, 20.5, 19.1, 12.9.

Fig. S2 ¹H NMR spectra of compound 15

Compound **15** ¹H NMR (D₂O, 500 MHz, δ) 3.58 (t, *J* = 6.5 Hz, 2H), 3.09-3.19 (m, 8H), 1.93-2.02 (m, 2H), 1.48-1.62 (m, 6H), 1.41 (s, 6H), 1.20-1.39 (m, 6H), 0.85 (t, *J* = 7.5 Hz, 9H); ¹³C NMR (D₂O, 126 MHz, δ) 176.8, 155.4, 66.4, 58.4, 55.1, 36.6, 232, 21.1, 20.3, 19.1, 12.9.

¹³C NMR spectra analysis of **5** and **13**

Fig. S3 ¹³C NMR data of QP *N*-Chloramine 5 and its precursor 13

3 References

 Li, L.; Pu, T.; Zhanel, G.; Zhao, N.; Ens, W.; Liu, S. New biocide with both N-chloramine and quaternary ammonium salt moieties exerts enhanced bactericidal activity. *Adv. Healthcare Mater.* 2012, 1(5), 609-620.

4 Original NMR data

The ¹H NMR spectrum of compound **8**

The ¹³C NMR spectrum of compound 8

The ¹H NMR spectrum of compound **9**

The ¹³C NMR spectrum of compound **9**

The ¹H NMR spectrum of compound **10**

The ¹³C NMR spectrum of compound **10**

The ¹³C NMR of compound **11**

The ¹H NMR of compound **12**

The ¹³C NMR of compound **12**

The ¹³C NMR of compound **13**

The ¹³C NMR of compound **3**

The ¹³C NMR of compound **4**

The ¹³C NMR of compound **5**

The ¹³C NMR of compound **6**

Feb09-2017.10.fid YF-1 Chixiaofang D20 P

20

The ³¹P NMR of compound **4**

Feb10-2017.50.fid

The ³¹P NMR of compound **5**

The ³¹P NMR of compound **6**