High-performance all-solid-state flexible carbon/TiO₂ micro-supercapacitors with photo-rechargeable capability

Jinguang Cai,^{ab} Chao Lv^{ab} and Akira Watanabe^{*a}

^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1

Katahira, Aoba-ku, Sendai 980-8577, Japan

Email: watanabe@tagen.tohoku.ac.jp

^b Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan,

PR China

Fig. S1 Schematic illustration of the laser direct writing system and a sample cell with a quartz window for Ar atmosphere.

Fig. S2 TEM image (a) and XRD pattern (b) of the commercial TiO_2 nanoparticles. Although there are aggregations of the TiO_2 nanoparticles seen from the TEM image due to the water evaporation, it is still clear to distinguish the primary nanoparticles with a size of less than 10nm. The XRD pattern demonstrated the anatase phase of the TiO_2 nanoparticles.

Fig. S3 Top view (a) and cross-sectional SEM images and TEM image of the carbon structures obtained by laser direct writing on polyimide film in Ar at a typical laser power of 157 mW.

Fig. S4 The current curve of the electrophoretic deposition process.

Fig. S5 As-prepared interdigitated carbon/TiO $_2$ photo-rechargeable micro-supercapacitors.