Electronic Supplementary Information

Study of structure-performance relationships of polymeric dispersants

on particle dispersion and stabilisation

Tommy Fang, Meng Huo, Zhengyi Wan, Hongge Chen, Liao Peng, Lei Liu and Jinying Yuan*

Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China. Corresponding Author E-mail: <u>yuanjy@mail.tsinghua.edu.cn</u>; Tel: +86-10-62783668; Fax: +86-10-62771149.

1. Synthesis and characterisation of AB diblock copolymers

Scheme S1

General synthetic strategy of AB diblock copolymers.

Synthetic procedure:

The synthetic procedure of AB diblock copolymers was described in the Experimental section of the manuscript.

¹H NMR characterisation:

¹H NMR (300 MHz, CDCl₃, (CH₃)₄Si, Fig. S1), δ /ppm: 0.78–1.12 (3 H, m, C(CH₃)), 1.20–1.33 (3 H, m, OCH₂CH₃), 1.74–2.04 (2 H, m, C(CH₃)CH₂), 2.26–2.35 (6 H, m, N(CH₃)₂), 2.52–2.66 (2 H, m, OCH₂CH₂N) and 3.95–4.17 (2 H, m, COOCH₂ of PDMA and PEMA blocks).

Fig. S1 ¹H NMR spectrum of PD30-*b*-PE40 in CDCl₃.

2. Synthesis and characterisation of ABA triblock copolymers

Scheme S2 General synthetic strategy of ABA triblock copolymers.

Synthetic procedure:

ABA triblock copolymers were synthesised by a three-step RAFT polymerisation (Scheme S2). The typical reaction is as follows (PDMA30-*b*-PEMA60-*b*-PDMA30 (PD30-*b*-PE60-*b*-PD30)): the first step used RAFT CTA DDMAT (72.8 mg, 0.2 mmol), DMA (0.942 g, 6 mmol), AIBN

(3.28 mg, 0.02 mmol) and 1,4-dioxane (1.5 mL), which were added into a Schlenk tube. The mixture was carefully degassed by purging with N₂ gas for 30 min, and then reacted at 70 °C with stirring for 8 h. After the reaction, the Schlenk tube was quenched in liquid N_2 and diluted with 1,4-dioxane (2 mL), before being precipitated in cold n-hexane twice. The purified product was vacuum dried overnight at room temperature, obtaining a yellow solid as the RAFT macromolecular CTA (PDMA-CTA). The second step used PDMA-CTA (1.016 g, 0.2 mmol), EMA (1.370 g, 12 mmol), AIBN (3.28 mg, 0.02 mmol) and 1,4-dioxane (3.5 mL), which were added into a Schlenk tube. The mixture was carefully degassed by purging with N_2 gas for 30 min, and then reacted at 70 °C with stirring for 8 h. After the reaction, the Schlenk tube was quenched in liquid N_2 and diluted with 1,4-dioxane (4 mL), before being precipitated in cold *n*-hexane twice. The purified product was vacuum dried overnight at room temperature, obtaining a yellow solid as the second step intermediate product PD30b-PE60. The third step used PD30-b-PE60 (2.386 g, 0.2 mmol), DMA (0.942 g, 6 mmol), AIBN (3.28 mg, 0.02 mmol) and 1,4-dioxane (5 mL), which were added into a Schlenk tube. The mixture was carefully degassed by purging with N₂ gas for 30 min, and then reacted at 70 °C with stirring for 8 h. After the reaction, the Schlenk tube was quenched in liquid N_2 and diluted with 1,4-dioxane (5 mL), before being precipitated in cold n-hexane twice. The purified product was vacuum dried overnight at room temperature, obtaining a yellow solid as the final product PD30-*b*-PE60-*b*-PD30.

¹H NMR characterisation:

¹H NMR (400 MHz, CDCl₃, (CH₃)₄Si, Fig. S2), δ /ppm: 0.70–1.05 (3 H, m, C(CH₃)), 1.15–1.29 (3 H, m, OCH₂CH₃), 1.66–1.94 (2 H, m, C(CH₃)CH₂), 2.15–2.29 (6 H, m, N(CH₃)₂), 2.44–2.58 (2 H, m, OCH₂CH₂N) and 3.87–4.10 (2 H, m, COOCH₂ of PDMA and PEMA blocks).

3. Synthesis and characterisation of comb copolymers

Scheme S3 General synthetic strategy of comb copolymers.

Synthetic procedure:

Comb copolymers were synthesised by a one-step RAFT polymerisation (Scheme S3). The typical reaction is as follows (P(DMA30-*co*-PPGA15) (P(D30-*co*-PPGA15))): RAFT CTA DDMAT (72.8 mg, 0.2 mmol), DMA (0.942 g, 6 mmol), PPGA (1.425 g, 3 mmol), AIBN (3.28 mg, 0.02 mmol) and 1,4-dioxane (3.5 mL) were added into a Schlenk tube. The mixture was carefully degassed by purging with N₂ gas for 30 min, and then reacted at 70 °C with stirring for 10 h. After the reaction, the Schlenk tube was quenched in liquid N₂ and diluted with 1,4-dioxane (4 mL), before being precipitated in cold *n*-hexane twice. The purified product was vacuum dried overnight at room temperature, obtaining a yellow solid as the final product P(D30-*co*-PPGA15).

¹H NMR characterisation:

¹H NMR (300 MHz, CDCl₃, (CH₃)₄Si, Fig. S3), δ /ppm: 0.77–1.10 (3 H, m, C(CH₃)), 1.10–1.24 (3 H, m, CH(CH₃)), 1.73–2.04 (2 H, m, C(CH₃)CH₂ and CHCH₂), 2.22–2.40 (6 H, m, N(CH₃)₂), 2.50–2.69 (2 H, m, OCH₂CH₂N), 3.25–3.85 (3 H, m, OCH₂CH(CH₃)) and 3.98–4.23 (2 H, m, COOCH₂).

Fig. S3 ¹H NMR spectrum of P(D30-co-PPGA15) in CDCl₃.

4. Summary of ¹H NMR and GPC characterisation of all copolymers

The number averaged molecular weight (M_n) and polydispersity index (PDI) of all the synthesised copolymer dispersants were determined by ¹H NMR and GPC measurements, which are summarised in Table S1.

Sample	Designed	Synthesised	<i>M</i> _{n,NMR} ^c	<i>M</i> _{n,GPC} ^d	PDI ^d
	Structure ^a	Structure ^b			
S1	PD20-PE40 ^e	PD18-PE37	7400	7700	1.14
S2	PD30-PE40	PD28-PE37	9000	9600	1.15
S 3	PD40-PE40	PD40-PE38	11000	10400	1.18
S4	PD30-PE20	PD30-PE19	7300	7500	1.16
S5	PD30-PE60	PD29-PE49	10500	9700	1.19
S6	PD10-PE40-PD10	PD10-PE38-PD10	7800	8900	1.20
S7	PD20-PE40-PD20	PD19-PE40-PD16	10400	9700	1.22
S8	PD30-PE40-PD30	PD29-PE38-PD28	13700	10300	1.21
S 9	PD30-PE60-PD30	PD25-PE57-PD25	14700	12000	1.22
S10	PD30-PE80-PD30	PD28-PE74-PD27	17500	15300	1.24
S11	P(D30-PPGA10)	P(D27-PPGA7)	7900	8700	1.22
S12	P(D30-PPGA15)	P(D28-PPGA12)	10500	14700	1.24
S13	P(D30-PPGA20)	P(D29-PPGA15)	12000	15200	1.25

^{*a*} Designed dispersant structure. ^{*b*} Synthesised dispersant structure estimated from ¹H NMR. ^{*c*} Estimated from ¹H NMR. ^{*d*} Determined by GPC. ^{*e*} PD: PDMA; PE: PEMA.

5. Dispersion of mesoporous silica nanoparticles

Mesoporous silica nanoparticles (MSNs) were synthesised according to literature.^{1,2} Morphology images of dispersed MSNs were recorded by using a high-resolution JEOL JEM-2010 transmission electron microscope (TEM) with an accelerating voltage of 120 kV after the samples were initially drop-coated onto carbon-coated copper grids.

Fig. S4 TEM images of dispersed MSNs in xylene: (a) control sample without dispersant; (b) AB diblock: PD30-*b*-PE40; (c) ABA triblock: PD30-*b*-PE60-*b*-PD30; (d) comb: P(D30-*co*-PPGA15).

References

- 1. T. Wang, M. Wang, C. Ding and J. Fu, *Chem. Commun.*, 2014, **50**, 12469-12472.
- 2. C. Y. Hong, X. Li and C. Y. Pan, *J. Mater. Chem.*, 2009, **19**, 5155-5160.