Supporting Information

Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity

Zhuoxian Mai,[‡] Jiali Chen,[‡] Ting He,^a Yang Hu,^a Xianming Dong,^a

Hongwu Zhang,^{b*} Wenhua Huang, ^b Frank Ko^{c*} and Wuyi Zhou^{a*}

^a Institute of Biomaterials, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China;

^B Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China;

^c Department of Materials Engineering, the University of British Columbia, Vancouver, BC, Canada V6T 1Z4.

Fig. S1 The calibration curve of Cur by plotting the absorption intensity at 425 nm with respect to concentration of Cur.

Fig. S2 Fluorescent microscope image of C_{10} PLA microcapsules with 488 nm fluorescence. (Scale bar = 20 μ m).

Fig. S3 The LC (%) and EE (%) of C_5 PLA, C_{10} PLA and C_{15} PLA fabricated by ES process, respectively.

PC12

Fig. S4 Immunofluorescence microscopy analysis of apoptosis in PC12 cells and 293T cells induced by C_0 PLA at different curcumin concentrations (ranging from 15.625 to 500 μ g/mL).

Fig. S5 SEM of C_{10} PLA microcapsule surface with high magnitude.