Electronic Supplementary Information (ESI)

Catalytic decomposition of N₂O over Rh/Zn-Al₂O₃ catalysts

Chengyun Huang,^a Zhen Ma,^{*b} Changxi Miao,^{*c} Yinghong Yue,^a Weiming Hua^{*a} and Zi

Gao^a

^a Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of

Chemistry, Fudan University, Shanghai 200433, PR China

^b Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP³), Department

of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China

^c Shanghai Research Institute of Petrochemical Technology SINOPEC, Shanghai 201208, PR

China

E-mail addresses: <u>zhenma@fudan.edu.cn</u> (Z. Ma), <u>miaocx.sshy@sinopec.com</u> (C. Miao), <u>wmhua@fudan.edu.cn</u> (W. Hua).

Fig. S1. XRD patterns of the catalysts and standard patterns of γ -Al₂O₃ (PDF#47-1308), ZnAl₂O₄ (PDF#05-0699), and ZnO (PDF#36-1451) in the $2\theta = 30-40^{\circ}$ region.

Fig. S2. Raman spectra for $Zn-Al_2O_3-800$ with different Zn content.

Fig. S3. EDX elemental mapping for $Rh/Zn-Al_2O_3-800$.

Fig. S4. TEM graphs with larger size for (a) Rh/Zn-Al₂O₃-800, (b) Rh/Zn-Al₂O₃-500, (c) Rh/Al₂O₃-800, and (d) Rh/ZnO-800.

Fig. S5. Distribution of Rh_2O_3 particle sizes for (a) $Rh/Zn-Al_2O_3-800$, (b) $Rh/Zn-Al_2O_3-500$, (c) Rh/Al_2O_3-800 , and (d) Rh/ZnO-800.

Fig. S6. Rh 3d XPS spectra of Rh/Zn-Al₂O₃-800 without being pretreated or after being pretreated in 4% H₂ (balance He) at 400 $^{\circ}$ C for 2 h.

Fig. S7. Conversion of N₂O on Rh/ZnO-800 catalysts prepared using ZnO supports prepared differently. I: ZnO support was prepared by precipitation. II: ZnO support was prepared by calcining Zn(NO₃)₂•6H₂O at 800 °C for 4 h.

Fig. S8. Conversion of N_2O on $Rh/Zn-Al_2O_3$ catalysts prepared by using $Zn-Al_2O_3$ supports calcined at different temperatures. The loading of Zn is 1 wt%.

Fig. S9. Conversion of N_2O on $Rh/Zn-Al_2O_3$ -800 catalysts with different Zn loadings.

Fig. S10. Conversion of N_2O on $Rh/1\%Zn-Al_2O_3-800$ at different GHSVs.

Fig. S11. Conversion of N_2O on different Rh/M-Al₂O₃-800 catalysts as a function of reaction temperature.

Fig. S12. Conversion of N₂O on Rh/Zn-Al₂O₃-800 and Rh/Al₂O₃-800 as a function of reaction time in the flow of (a) 0.5% N₂O/He and (b) 0.5% N₂O + 2% H₂O + 5% O₂/He.

Fig. S13. Conversion of N₂O on Rh/Zn-Al₂O₃-800 catalyst with and without H₂ pretreatment (400 $^{\circ}$ C for 2 h).

Fig. S14. CO₂-TPD profiles of Zn-Al₂O₃-800, Zn-Al₂O₃-500, Al₂O₃-800, and ZnO-800.

Catalyst	Mass of	Active element	Flow rate	Gas composition	T_{50}	T_{90}	Reference
	catalyst (g)	content (wt%)	$(\text{cm}^3 \text{min}^{-1})$		(°C)	(°C)	
Rh/Zn-Al ₂ O ₃ -800	0.5	1.1	60	0.5% N ₂ O	251	271	this work
Rh/Zn-Al ₂ O ₃ -800	0.5	1.1	60	$\begin{array}{l} 0.5\% N_2 O + 5\% O_2 \\ + 2\% H_2 O \end{array}$	333	371	this work
Rh/Al ₂ O ₃	0.5	1.0	60	0.5% N ₂ O	289	318	this work
Rh/Al ₂ O ₃	0.5	1.0	60	$\begin{array}{l} 0.5\%N_2O+5\%O_2\\ +\ 2\%H_2O \end{array}$	388	421	this work
Rh/TiO ₂	0.5	1.0	60	0.5% N ₂ O	310	340	[24]
Rh/SiO ₂	0.5	1.0	60	0.5% N ₂ O	324	360	[24]
Rh/CeO2	0.5	1.0	60	0.5% N ₂ O	223	250	[26]
Rh/HAP-PEG-200	0.5	0.97	60	0.5% N ₂ O	223	245	[26]
Rh/HAP-PEG-200	0.5	0.97	60	$\begin{array}{l} 0.5\% N_2 O + 5\% O_2 \\ + 2\% H_2 O \end{array}$	344	386	[26]
Rh/USY	0.05	2.0	50	0.095% N ₂ O	237	258	[21]
Cu-ZSM-11	0.2	3.06	60	0.5% N ₂ O	348	373	[46]
Fe-ZSM-11	0.2	3.90	60	0.5% N ₂ O	435	465	[5]
Co-ZSM-11	0.2	3.59	60	0.5% N ₂ O	387	435	[51]
Pd/CeO ₂	0.1	0.5	100	0.1% N ₂ O	470	_ a	[57]
Pt/CeO ₂	0.1	0.5	100	0.1% N ₂ O	462	_ a	[57]
Ir/CeO ₂ -Al ₂ O ₃	0.1	0.5	150	0.1% N ₂ O	474	535	[58]

 $\label{eq:stables} Table \ S1 \quad \mbox{Activities of some catalysts for N_2O decomposition in reported literature}$

^{*a*} Conversion did not reach 90% under the reaction condition.