Photoelectrochemical sensing of bisphenol A based on graphitic

carbon nitride/bismuth oxyiodine composites

Li Xu, Pengcheng Yan, Henan Li, Siyan Ling, Jiexiang Xia*, Qian Xu, Jingxia Qiu, Huaming Li*

Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

*Corresponding authors. E-mail addresses: <u>xjx@ujs.edu.cn</u> (Jiexiang Xia); <u>lhm@ujs.edu.cn</u> (Huaming Li)

Fig. S1 Elemental maps of the g-CN/BiOI composites.

Fig. S2 Photocurrent response of the g-CN/BiOI modified ITO electrodes with different content of g-CN: (a) 0 wt%, (b) 1 wt%, (c) 3 wt%, (d) 5 wt%, (e) 7 wt%, and (f) 10 wt%.

Fig. S3 Photocurrent responses of the g-CN/BiOI modified ITO and BiOI modified ITO in phosphate buffer solution (0.1 M, pH 7.0) in the absence and presence of BPA (720 ng mL⁻¹) at 0 V with light excitation.

Fig. S4 Effect of pH on the photocurrent response of the g-CN/BiOI modified ITO.

Fig. S5 Influence of the interfering substances on the responses of the PEC sensor for BPA (80 ng mL⁻¹). The concentrations of all other substances are 100-fold to BPA.

Fig. S6 The stability of the PEC sensor for BPA (1200 ng mL⁻¹).

Sensor	Methods	Linear range (ng	$IOD(ng m I^{-1})$	Dof
		mL-1)	LOD (lig lilL ')	Kel.
Thionine-tyrosinase	CU	24.2 10272	24.2	1
СРЕ	CV	34.2-10273	34.2	1
MMIPs	~	136.9-22829	22.8	2
NPs/CTAB/CPE	CV			
CYP2C9-PAM/GCE	It	285.4-2282.9	132.4	3
TYR-Chi/GCE	CV	91.3-570.7	30.13	4
[Ru(bpy) ₃] ²⁺ /ITO	DDU	114-27390	66.2	5
electrode	DPV			
the g-CN/BiOI	22.2			
modified ITO electrode	PEC	80-3200	26	This Work

Table S1 Comparison of the analytical characteristics obtained using different sensors for BPA

determination.

1 M. Portaccio, D.D. Tuoro, F. Arduini, M. Lepore, D.G. Mita, N. Diano, L. Mita and D. Moscone, *Biosens. Bioelectron.*, 2010, **25**, 2003-2008.

2 L.L. Zhu, Y.H. Cao and G.Q. Cao, Biosens. Bioelectron., 2014, 54, 258-261.

3 P.Y. Sun and Y.H. Wu, Sens. Actuators B, 2013, 178, 113-118.

4 L. Wu, D. Deng, J. Jin, X. Lu and J. Chen, Biosens. Bioelectron., 2012, 35, 193-199.

5 Q. Li, H. Li, G.F. Du and Z.H. Xu, J. Hazard. Mater, 2010, 180, 703-709.

	BPA concentr	ration (ng mL ⁻¹)		
sample	added	found	recovery	RSD
1	100.0	104.2	104.2%	3.2%
2	200.0	212.1	106.1%	2.6%
3	400.0	392.5	98.1%	4.7%
4	800.0	769.4	96.2%	3.8%

Table S2 PEC Detection of BPA in water from Yangtze River by the Proposed PEC sensor