Supporting information for

SO₂ capture by ionic liquid and spectroscopic speciation of sulfur (IV)

therein

Yoshiro Yasaka,* Koki Watanabe, and Yoshifumi Kimura*

Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

Corresponding Authors Yoshifumi Kimura and Yoshiro Yasaka Department of Molecular Chemistry and Biochemistry Faculty of Science and Engineering Doshisha University Kyoto 610-0321, Japan

	<i>E</i> in vapor (hartree)	<i>E</i> in SCRF water (hartree)
SO ₂	-548.587924	-548.593472
CO ₂	-188.570869	-188.573349
H ₂ O	-76.411785	-76.418394
HCO ₃ ⁻	-264.434037	-264.536980
HSO ₃ ⁻	-624.472227	-624.568445
$HOSO_2^-$	-624.476141	-624.572371
$S_2O_5^{2-}$	-1172.417332	-
(HOSO ₂) ₂ ^{2–} symmetric	-	-1249.154095
(HOSO ₂) ₂ ^{2–} asymmetric	-	-1249.154649
(HOSO ₂ ⁻)SO ₂	-1173.089803	-1173.171224
(HSO ₃ ⁻)SO ₂	-1173.083120	-1173.165021

Table S1. Thermal energies for the optimized structures of monomers and clusters using aug-ccpVTZ basis set and B3PW91 functional

Table S2. Thermal energies for the optimized structures of monomers and clusters using 6-311G+(d,p) basis set and B3PW91 functional. (T) and (G) mean the all trans and all gauche conformations of alkyl-chains of the phosphonium cation.

	E (hartree)
SO ₂	-548.540968
CO_2	-188.554120
H ₂ O	-76.403810
HCO ₃ ⁻	-264.411579
HSO ₃ ⁻	-624.407775
HOSO_2^-	-624.419833
$[P_{4448}]^+(T)$	-1129.100874
[P ₄₄₄₈]HCO ₃ (T)	-1393.647760
[P ₄₄₄₈]HSO ₃ (T)	-1753.636099
[P ₄₄₄₈]HOSO ₂ (T)	-1753.651688
$[P_{4448}]^+(G)$	-1129.091735
[P ₄₄₄₈]HCO ₃ (G)	-1393.636698
[P ₄₄₄₈]HSO ₃ (G)	-1753.623588
[P ₄₄₄₈]HOSO ₂ (G)	-1753.641198

Table S3. Calculated geometries of (a) HCO_3^- , (b) HSO_3^- , and (c) $HOSO_2^-$ by DFT calculations using B3PW91 functional. Figures S1 and S2 show the geometrical parameter definitions. Distances in angstroms with a two atom sequence denoting a bond. Angles in degrees with a three atom sequence denoting a bond angle and a four-atom sequence denoting a dihedral angle. In cases of cluster with a cation, the distance to the phosphonium atom is also denoted.

	aug-cc-pVTZ		6-311G+(d,p)		
	in vacuum	in SCRF water	in vacuum	with $[P_{4448}]^+(T)$	with $[P_{4448}]^+$ (G)
HO_1	0.9621	0.9635	0.9623	0.9634	0.9634
CO_1	1.4389	1.4035	1.4434	1.3841	1.3846
CO_2	1.2488	1.2485	1.2492	1.2534	1.2524
CO ₃	1.2329	1.2420	1.2324	1.2479	1.2484
HO_1C	101.82	105.47	102.09	104.60	104.62
O_1CO_2	113.51	115.62	113.33	116.36	116.43
O_1CO_3	114.19	114.29	114.08	115.22	115.12
O_2CO_3	132.31	130.09	132.59	128.42	128.45
HO_1CO_2	-0.01	-0.02	0.00	-0.27	-0.29
HO_1CO_3	180.00	179.99	180.00	179.8	179.61
СР				3.8785	3.8767

(a) HCO_3^-

(b) HSO_3^-

	aug-cc-pVTZ		6-311G+(d,p)		
	in vacuum	in SCRF water	in vacuum	with $[P_{4448}]^+(T)$	with $[P_{4448}]^+$ (G)
HS	1.3747	1.3625	1.3815	1.3680	1.3682
SO_1	1.4722	1.4738	1.4794	1.4845	1.4794
SO_2				1.4830	1.4925
SO_3				1.4783	1.4738
HSO_1	103.81	104.78	103.76	105.21	105.28
HSO_2				105.04	104.43
HSO ₃				105.51	105.66
O_1SO_2	114.49	113.73	114.53	112.79	112.31
O_1SO_3				113.56	114.74
O_2SO_3				113.67	113.26
SP				4.0129	4.1527

(c) HOSO_2^-

	aug-cc-pVTZ		6-311G+(d,p)		
	in vacuum	in SCRF water	in vacuum	with $[P_{4448}]^+(T)$	with $[P_{4448}]^+(G)$
HO ₁	0.9662	0.9679	0.9672	0.9648	0.9647
SO_1	1.7597	1.7249	1.7920	1.7935	1.7938
SO_2	1.5020	1.5028	1.5069	1.5068	1.5060
SO_3	1.4888	1.4962	1.4969	1.4988	1.4994
HO_1S	100.44	104.48	101.78	106.56	106.44
O_1SO_2	99.11	100.48	99.72	101.13	101.15
O_1SO_3	103.15	102.79	103.52	97.28	97.26
O_2SO_3	112.12	110.77	112.14	111.26	111.26
$\mathrm{HO}_1\mathrm{SO}_2$	12.88	15.14	29.05	63.46	62.61
HO_1SO_3	-102.53	-99.18	-86.7	176.89	176.05
SP				4.1544	4.1587

[P ₄₄₄₈]]	Br	[P ₄₄₄₈]HCC) ₃	$[P_{4448}]H$ $q_{SO_2} = 0$	SO ₃ 0.98	$[P_{4448}]$ HSC $q_{SO_2} = 1.57$) ₃
249	S						
				315	S	314	S
						430~470	S
				505	S	503	S
		621	m				
						635	m
642	shoulder						
694	shoulder						
716	VW						
				725	m	723	m
752	W						
810	VW						
844	VW						
870	S						
893	S						
970	W						
		996	S				
1012	W						
1033	W						
				1029	W	1029	W
				1048	S	1046	S
1053	S						
				1079	m	1078	S
1087	shoulder						
1101	S						
1116	shoulder						
				1120	m	1119	m
						1144	S
1170	W						
1201	W						
1236	W						
		1262	S				
1278	S						
1304	S						
1311	S						
1348	W						
1411	W						
1449	S						
		1655	m				
		1672	m				
				2444	m	2447	m

Table S4. Raman bands observed experimentally. Only the bands assigned to anionic species are listed for those of $[P_{4448}]HCO_3$ and $[P_{4448}]HSO_3$. The Raman shifts of $[P_{4448}]Br$ are the apparent peak positions, and those of $[P_{4448}]HCO_3$ and $[P_{4448}]HSO_3$ are those obtained by multi-peak fittings after the subtraction of cation bands. The region of CH stretching vibrations is omitted.

HCO ₃ ⁻			
Assanta	aug-cc-pVTZ	aug-cc-pVTZ	6-311G+(d,p)
Assgitt	in vacuum	in SCRF water	in vacuum
δOC(OH)	548	563	551
ρΟΗ	551	526	527
$vCO + \delta CO_2$	630	654	630
$\delta_s CO_3$ (umbrella)	827	826	823
$vCO + \delta CO_2$	863	914	861
δСОН	1194	1197	1197
v_sCO_2	1309	1316	1312
$v_{as}CO_2$	1773	1692	1791
vOH	3822	3811	3842

Table S5. Vibrational frequencies for HCO₃⁻, HSO₃⁻, and HOSO₂⁻ for the optimized structure by the DFT calculations using B3PW91 functional with different basis-sets and solvent model.

HSO_3^-

Δ α	conta	aug-cc-pVTZ	aug-cc-pVTZ	6-311G+(d,p)
AS	sgnt"	in vacuum	in SCRF water	in vacuum
δSO_2	Е	484	481	478
$\delta_s SO_3$	A_1	614	600	609
$\nu_s SO_3$	A_1	1031	1029	1011
δΟSΗ	Е	1099	1105	1096
$\nu_a SO_3$	Е	1225	1189	1205
νSH	A_1	2389	2501	2377

$HOSO_2^-$

A coont ^a	aug-cc-pVTZ	aug-cc-pVTZ	6-311G+(d,p)
Assgiit."	in vacuum	in SCRF water	in vacuum
ρΟΗ	215	122	149
δOS(OH)	356	362	361
$\omega SO_2 + \nu S(OH)$	393	413	376
$\delta SO_2 + \nu S(OH)$	525	528	505
$\delta_s SO_2(OH)$	591	591	558
$\delta SOH + \nu SO$	1005	1000	986
$\delta SOH + \nu_s SO_2$	1096	1070	1076
$\delta SOH + \nu_{as}SO_2$	1155	1106	1125
νOH	3769	3752	3779

^a Notation of vibrational modes : v, stretching; δ , bending; τ , twisting,; ω , wagging; ρ , rocking; s, symmetric; a, asymetric.

Table S6. Calculated geometries of $HOSO_2^-$ dimer (symmetric and asymmetric) by DFT calculations using B3PW91 functional and aug-cc-pVTZ in SCRF model water. Figures S6(a) and(b) show the geometrical parameter definitions. Distances in angstroms with a two atom sequence denoting a bond. Angles in degrees with a three atom sequence denoting a bond angle and a four-atom sequence denoting a dihedral angle.

	Symmetric dimer	Asymmetric dimer
H ₁ O ₁	1.0026	0.9986
H_2O_5	1.0026	0.9984
O_2H_2	1.6781	1.6760
O_5H_1	1.6783	1.7017
S_1O_1	1.6649	1.6663
S_1O_2	1.5224	1.5217
S_1O_3	1.5023	1.5015
S_2O_4	1.6649	1.6773
S_2O_5	1.5224	1.5194
S_2O_6	1.5023	1.4960
$H_1O_1S_1$	109.49	109.95
$H_2O_4S_2$	109.49	107.48
$O_1S_1O_2$	102.67	102.86
$O_1S_1O_3$	104.46	104.37
$O_2S_1O_3$	109.07	109.05
$O_4S_2O_5$	102.67	102.25
$O_4S_2O_6$	104.46	100.31
$O_5S_2O_6$	109.07	109.83
$O_2H_2O_4$	176.07	176.59
$O_5H_1O_1$	176.13	173.06
$S_1O_2H_2$	121.53	126.14
$S_2O_5H_1$	121.57	120.49
$H_1O_1S_1O_2$	-45.55	-46.94
$H_1O_1S_1O_3$	68.26	66.89
$\mathrm{H}_{2}\mathrm{O}_{4}\mathrm{S}_{2}\mathrm{O}_{5}$	45.47	-57.71
$\mathrm{H}_{2}\mathrm{O}_{4}\mathrm{S}_{2}\mathrm{O}_{6}$	-68.35	-170.81
$O_1S_1O_2H_2$	52.57	29.75
$O_3S_1O_2H_2$	-57.83	-80.62
$O_4S_2O_5H_1$	-52.53	43.09
$\mathrm{O}_6\mathrm{S}_2\mathrm{O}_5\mathrm{H}_1$	57.87	148.94
$S_2O_5O_1S_1$	57.52	19.05
$S_2O_4O_2S_1$	-57.51	31.68

Table S7. Calculated geometries of complex of $HOSO_2^-$ and SO_2 , $S_2O_5^{2-}$, and SO_2 by DFT calculations using B3PW91 functional and aug-cc-pVTZ. Figures S7(a-d) show the geometrical parameter definitions. Distances in angstroms with a two atom sequence denoting a bond. Angles in degrees with a three atom sequence denoting a bond angle and a four-atom sequence denoting a dihedral angle.

	$\mathrm{HS_2O_5^-}$		S O ² -	50
	$HOSO_2^- + SO_2$	$HOSO_2^- + SO_2$	$S_2 O_5^2$	SO ₂
HO ₁	0.9826			
HS_1		1.3641		
O_5H	1.8560	3.0727		
S_1S_2	2.5220	3.2522	2.4050	
S_1O_1	1.6535	1.4607	1.4929	
S_1O_2	1.4712	1.4603	1.4964	
S_1O_3	1.4677	1.5074	1.4964	
S_2O_4	1.4735	1.4604	1.5070	1.4474
S_2O_5	1.4948	1.4635	1.5069	1.4474
$\mathrm{HO}_1\mathrm{S}_1$	103.31			
$\mathrm{HS}_{1}\mathrm{O}_{1}$	26.96	105.35		
$\mathrm{HS}_{1}\mathrm{O}_{2}$		105.78		
$\mathrm{HS}_{1}\mathrm{O}_{3}$		102.69		
$O_1S_1O_2$	106.99	116.83	112.42	
$O_1S_1O_3$	105.03	113.12	112.42	
$O_2S_1O_3$	115.98	111.54	111.63	
$O_4S_2O_5$	113.78	114.73	111.58	118.22
O_1HO_5	146.22			
HS_1S_2		84.45		
$O_1S_1S_2$	94.17	87.44	111.58	
$O_2S_1S_2$	109.45	148.72	104.08	
$O_3S_1S_2$	121.68	37.37	104.08	
$S_1S_2O_4$	105.80	120.99	104.52	
$S_1S_2O_5$	91.97	88.06	104.51	
$\mathrm{HO}_1\mathrm{S}_1\mathrm{O}_2$	-99.02			
$\mathrm{HO}_1\mathrm{S}_1\mathrm{O}_3$	137.17			
$\mathrm{HO}_1 S_1 S_2$	12.78			
$O_1S_1S_2O_4\\$	100.66	-137.42	58.68	
$O_2S_1S_2O_4\\$	-149.68	5.39		
$O_3S_1S_2O_4$	-9.87	-2.52		
$O_1S_1S_2O_5$	-14.75	104.67	-58.68	

$HS_1S_2O_5$		-1.03	
		1.02	
$HS_1S_2O_4$		116.88	
$O_3S_1S_2O_5$	94.91	-120.42	
$O_2S_1S_2O_5$	-125.27	-112.51	

Figure S1. Characterization of $[P_{4448}][HCO_3]$. (a) ¹H NMR spectrum at 25 ^oC (no solvent), (b) ¹³C NMR spectrum at 23 ^oC (no solvent), (c) ATR-IR spectra (measured by JASCO FT/IR-4200) at 23 ^oC (no solvent) and mass spectrum measured by SHIMADZU LCMS-2020 on (d) positive and (e) negative mode.

Peak (cm⁻¹); 640(vw), 683(w), 721(w), 753(vw), 814(w), 837(m), 920(w), 976(m), 1006(shoulder), 1097(w), 1236(vw), 1333(shoulder), 1374(s), 1413(shoulder), 1465(m), 1635(vs), 2678(broad), 2857(shoulder), 2871(s), 2930(s), 2957(s)

(d)

(e)

Figure S2 ¹³C NMR spectra of SO₂-loaded ionic liquid (left: bicarbonate, right: P₄₄₄₈ cation). The spectra were collected at 25 °C except for $q_{SO2} = 0$ (23 °C). The cation peaks sharpen at increased SO₂ loadings because of the decrease in viscosity. The chemical shift reference was taken by the terminal methyl carbons of the P₄₄₄₈ cation.

Figure S3. ¹H NMR spectra at 298-338 K. The peak at 10 ppm assigned to the HSO_3^- isomer broadens at higher temperature due to the increase in the isomer exchange rate. The peak assigned to the hydroxyl protons ($HOSO_2^-$, HCO_3^-) shifts from 7.7 to 6.6 ppm as the temperature is raised

Figure S4. Images of the optimized structure of (a) HCO_3^- , (b) HSO_3^- , and (c) $HOSO_2^-$ by the DFT calculations using B3PW91 functional and aug-cc-pVTZ basis set.

Figure S5. Images of the optimized structures of (a) all trans conformations and (b) all gauche conformations of alkyl-chains of cation ($[P_{4448}]^+$), together with the clusters of all trans $[P_{4448}]^+$ with (c) HCO₃⁻, (d) HSO₃⁻, and (e)HOSO₂⁻, by the DFT calculations using B3PW91 functional and 6-311G+(d,p) basis set.

(c)

Figure S6. Comparison between the theoretical and experimental Raman spectra of $[P_{4448}]^+$.

Figure S7. (a) Typical example of the multi-peak fitting in the finger-print region. (b) Vibrational

frequencies of the SH stretching with different q_{SO_2} . In doing the multi-peak fit of the spectrum, we have used the macro function incorporated into the Igor 6.22 A (Wavemetrix). The difference spectra of the finger-print region were further divided into several regions in order to making the multi-peak fit without using any complex baseline function. Most complex part was the region from 1020 cm⁻¹ to 1180 cm⁻¹ where several bands overlaps. We have assumed that five different bands with different

shapes contribute the spectrum for the spectra with $q_{SO_2} \leq 1$. The band shape functions were chosen to fit the spectrum (Gaussian (band I, 1029 cm⁻¹), exponentially modified Gaussian (ExpModGauss) (band II, 1048 cm⁻¹), Voigt (band III, 1079 cm⁻¹), Gaussian (band IV, 1099 cm⁻¹), and Voigt (band V, 1119 cm⁻¹). The band IV at 1099 cm⁻¹ is very weak and made minor contribution to the total spectrum, but it was necessary to fit the whole spectrum reasonably. Since the band shape at 1048 cm⁻¹ is asymmetric, the ExpModGauss function was employed to fit the band. The Gaussian width parameters for band I and band IV, the Gaussian width and the exponential component of a ExpModGauss function for band II, and the width and shape (mixing ratio of Gaussian and Lorentzian) parameters of a Voigt function (band III and V) were fixed to optimized values for each

band through the fitting all spectra with different values of q_{SO_2} . In the fitting of the SH stretching mode, an ExpModGauss function was employed to represent the asymmetric nature of the band.

Figure S8. Vibrational spectra (Raman activities) of different anions with $[P_{4448}]^+$ and without $[P_{4448}]^+$. The vibrational modes that mainly derive from the anion species are selected and depicted. The upper panel shows the difference of the normalized Raman spectra of $[P_{4448}]$ HCO₃ with different g_{50} .

 q_{SO_2} from that of neat [P₄₄₄₈]HCO₃.

Figure S9. Optimized structures of the dimers of HOSO₂⁻ (symmetric (a) and asymmetric (b))and (c) vibrational spectra (Raman activities) of different anions calculated by DFT with B3PW91 functional and aug-cc-pVTZ basis set in SCRF water. The upper panel shows the difference of the normalized

Raman spectra of $[P_{4448}]$ HCO₃ with different q_{SO_2} from that of neat $[P_{4448}]$ HCO₃.

(a)

(c).

Figure S10. Optimized structures of (a) the complex of $HOSO_2^-$ and SO_2 , (b)the complex of HSO_3^- and SO_2 , (c) $S_2O_5^{2-}$ and (d)SO₂, and (e)vibrational spectra (Raman activities) of HSO_3^- , $HOSO_2^-$, the complex of $HOSO_2^-$ and SO_2 , the complex of HSO_3^- and SO_2 , $S_2O_5^{2-}$, and SO_2 by DFT with B3PW91 functional and aug-cc-pVTZ basis set.

