Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

A fluorescence "turn-on" chemosensor for Hg²⁺ and Ag⁺ based on NBD (7-nitrobenzo-2oxa-1,3-diazolyl)

Seong Youl Lee, Kwon Hee Bok, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: chealkim@seoultech.ac.kr

Sensor	Detection limit (Hg2+/Ag+, µM)	Binding constant (Hg ²⁺ /Ag ⁺ , M ⁻¹)	Percent of water in solution (%)	Method of detection (Hg ²⁺ /Ag ⁺)	Reference
C C C C C C C C C C C C C C C C C C C	0.29 / 0.4	2.3 x 10 ⁴ / 5.1 x 10 ⁴	50	Fluorescence	1
	140 / 650	No data	15	Fluorescence, Colorimetric	2
HO COLOR	0.21 / 0.009	2.2 x 10 ⁴ / No data	40	Fluorescence	3
of grant and a second s	0.25 / No data	7.4 x 10 ⁸ / No data	80	Fluorescence	4
	No data	1.0 x 10 ⁹ /4.1 x 10 ⁴	0.5	Fluorescence	5
	0.37 / 0.34	2.6 x 10 ⁵ / No data	67	Fluorescence	6
	0.19/0.59	$1.0 \ge 10^5 / 9.4 \ge 10^4$	10	Fluorescence	7
	0.13 / No data	3.1 x 10 ³ / 1.2 x 10 ⁸	50	Fluorescence, Colorimetric	8
	0.05 / 0.12	5.0 x 10 ⁴ /3.5 x 10 ⁴	70	Fluorescence	This work

Table S1. Examples of chemosensors for simultaneous detection of Hg^{2+} and Ag^{+} .

References

- H. El-Shekheby, A. H. Mangood, S. M. Hamza, A. S. Al-Kady and E.-Z. M. Ebeid, *Luminescence*, 2014, 29, 158-167.
- 2 X. Zhang, Y. Xu, P. Guo and X. Qian, New J. Chem., 2012, 36, 1621-1625.
- 3 W. Shen, L. Wang, M. Wu and X. Bao, *Inorg. Chem. Commun.*, 2016, **70**, 107-110.
- 4 T. Chen, W. Zhu, Y. Xu, S. Zhang, X. Zhang and X. Qian, *Dalton Trans.*, 2010, **39**, 1316-1320.
- 5 X. Liu, X. Yang, H. Peng, C. Zhu and Y. Cheng, *Tetrahedron Lett.*, 2011, **52**, 2295-2298.
- 6 L. Liu, G. Zhang, J. Xiang, D. Zhang and D. Zhu, Org. Lett., 2008, 10, 4581-4584.
- 7 W. Shi, Y. Chen, X. Chen, Z. Xie and Y. Hui, J. Lumin., 2016, 174, 56-62.
- 8 J. Fan, C. Chen, Q. Lin and N. Fu, Sens. Actuators B, 2012, **173**, 874-881.

Fig. S1 ¹H NMR spectrum of 2.

Fig. S2 ¹H NMR spectrum of 1.

Fig. S3 ¹³C NMR spectrum of 1.

Fig. S4 Job plot of 1 and Hg^+. The total concentrations of 1 and Hg^+ were 20 $\mu M.$

Fig. S5 ¹H NMR titration of 1 with Hg^{2+} ions.

Fig. S6 Benesi-Hildebrand plot (at 520 nm) of **1** based on fluorescence titration, assuming 1:1 stoichiometry for association between **1** and Hg^{2+} .

Fig. S7 Determination of the detection limit based on change in the ratio of 1 (5 μ M) with Hg²⁺.

Fig. S8 Fluorescence intensities (520 nm) of **1** (5 μ M) and **1**-Hg²⁺ complex, respectively, at pH 2-12 in a mixture of buffer-CH₃CN (7:3, v/v) at room temperature.

Fig. S9 Absorption spectral changes of 1 (5 μ M) in the presence of different concentrations of Ag⁺ ions in a mixture of buffer-CH₃CN (7:3, v/v) at room temperature.

Fig. S10 Job plot of 1 and Ag⁺. The total concentrations of 1 and Ag⁺ were 20 $\mu M.$

Fig. S11 Positive-ion electrospray ionization mass spectrum of 1 (10 μ M) upon addition of AgNO₃ (1.0 equiv).

Fig. S12 1 H NMR titration of 1 with Ag⁺ ions.

Fig. S13 Benesi-Hildebrand plot (at 520 nm) of **1** based on fluorescence titration, assuming 1:1 stoichiometry for association between **1** and Ag⁺.

Fig. S14 Determination of the detection limit based on change in the ratio of 1 (5 μ M) with Ag⁺.

Fig. S15 Competitive selectivity of 1 (5 μ M) toward Ag⁺ (2.6 equiv) in the presence of other metal ions (2.6 equiv).

Fig. S16 Fluorescence intensities (520 nm) of **1** (5 μ M) and **1**-Ag⁺ complex, respectively, at pH 2-12 in a mixture of buffer-CH₃CN (7:3, v/v) at room temperature.

(a)

Fig. S17 Fluorescence spectral changes of 1 (5 μ M) after the sequential addition of (a) Ag⁺ and Cl⁻, and (b) Hg²⁺ and Cl⁻.

Fig. S18 Emission intensity (520 nm) of **1** as a function of Ag^+ concentration. [**1**] = 5 μ mol/L and $[Ag^+] = 0.0-12.0 \ \mu$ mol/L in buffer-CH₃CN mixture (7:3, v/v).

Fig. S19 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO).

(a)

Fig. S20 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-Hg²⁺. (b) The major electronic transition energies and molecular orbital contributions for 1- Hg^{2+} (H = HOMO and L = LUMO).

0.5289

Fig. S21 Molecular orbital diagrams and excitation energies of 1 and 1-Hg²⁺ complex.

Fig. S22 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-Ag⁺. (b) The major electronic transition energies and molecular orbital contributions for 1- Ag^+ (H = HOMO and L = LUMO).

0.3149

Fig. S23 Molecular orbital diagrams and excitation energies of 1 and 1-Ag⁺ complex.