Electronic Supplementary Information

Hetero-assembly of $Li_4Ti_5O_{12}$ nanosheets and multi-walled carbon nanotubes

nanocomposite for high-performance lithium and sodium ion batteries

Y. Tian, Z. L. Wu, G. B. Xu, L. W. Yang*, J. X. Zhong

Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of

Physics and Optoelectronics, Xiangtan University, Hunan 411105, China

^{*}Corresponding authors: <u>ylwxtu@xtu.edu.cn;</u>

Figure S1. (a)-(b) The electrical conductivity experiments of the LTO/MWCNTs nanocomposite, LTO and MWCNTs were performed at the same distance over a voltage range of 1-2.5 V using a I-V test of keithley 2612B system. The measuring electrodes were fabricated as follows: each sample was dissolved with PVDF (1:9 in weight ratio) in N-methyl-2-pyrrolidinone (NMP) to form slurry under stirring. The slurry was coated onto a circular Cu foil and dried at 120 $^{\circ}$ C in vacuum for 12 h. The MWCNTs exhibits highest electrical conductivity. Meanwhile, the presence of MWCNTs in the LTO/MWCNTs nanocomposite shows superior electrical conductivity than that of pure LTO.

Figure S2. Plots between Z' and $\omega^{-1/2}$ for LTO/MWCTNs and reference samples, respectively.

Table SI Rate performance and cycling performance of the structured $Li_4Ti_5O_{12}$

Compound	10Ccapacity	100C	Capacity retention	Reference
	[mAhg ⁻¹]	capacity	at 10C (LIBs)	
	(LIBs)	[mAhg ⁻¹]		
		(LIBs)		
LTO/MWCNTs	162	151(30C)	89.8% over 500	This work
			cycles	
LTO/graphene	135	82.7(60C)	97.5% over 100	1
nanosheets			cycles	
Cubic LTO/carbon	151	134.9(20C)	80.3% over 200	2
composite			cycles	
N-doped carbon	152	123	98.5% over 100	3
coating LTO			cycles	
LTO/reduced	145	100	96% over 100cycle	4
graphite oxides				
LTO-C Nanotube	154	81	93% over 500 cycles	5
Arrays				
Carbon-Templating	161	>150	97.6% over 100	6
LTO nanocrystal			cycles	
NC-LTO-700	145.8	/	94.7% over 400	7
nanosheets			cycles (5C)	
CN-LTO-NMS	129	/	95% during the 1000	8
			cycles at 1C	
Porous LTO with	129	/	83% after 2200	9
7.0% NC			cycles at 2 C	
NC-LTO	133.4	/	95.9% after 1000	10
			cycles at 1C	
Reduce graphene	158	143	54.6% after 2000	11
oxide modified			cycles at 80C	
Li ₄ Ti ₅ O ₁₂				
nanoparticles				
Confined growth of	100	72 (30C)	89.6% after 1000	12
Li4Ti5O12				
nanoparticles in				
nitrogen-				
doped mesoporous				
graphene fibers				
Li4Ti5O12/Hollow	120	85.8 (30C)	91.2% after 500	13
Graphitized Nano-			cycles at 5C	
Carbon Composites				

(LTO) composite material prepared through different methods for LIBs.

Table SII Rate performance and cycling performance of the structured ${\rm Li}_4{\rm Ti}_5{\rm O}_{12}$

Compound	0.5C capacity	5C capacity	Capacity retention	Reference
	[mAhg ⁻¹]	[mAhg ⁻¹]	at 1C (SIBs)	
	(SIBs)	(SIBs)		
LTO/MWCNTs	147	83	75.6% over 200	This work
			cycles	
Carbon-coated	158	130	97% after 50 cycles	14
Li ₄ Ti ₅ O ₁₂ nanowires			at 0.2C	
Li ₄ Ti ₅ O ₁₂ -RT	180	132	97% after 200 cycles	15
			and 67% after 400	
			cycles	
Li ₄ Ti ₅ O ₁₂ @C	133	72 (2C)	92% after 100 cycles	16
			at 0.2C	
Porous Li ₄ Ti ₅ O ₁₂	121	55	/	17
Li ₄ Ti ₅ O ₁₂	139	100 (2C)	93% after 150 cycles	18
Nanosheets			at 0.5C	

(LTO) composite material prepared through different methods for SIBs.

References

- 1. L. Shen, C. Yuan, H. Luo, X. Zhang, S. Yang and X. Lu, Nanoscale, 2011, 3, 572-574.
- B. Li, C. Han, Y.-B. He, C. Yang, H. Du, Q.-H. Yang and F. Kang, *Energy & Environmental Science*, 2012, 5, 9595-9602.
- N. Li, G. Zhou, F. Li, L. Wen and H. M. Cheng, Advanced Functional Materials, 2013, 23, 5429-5435.
- 4. H.-K. Kim, S.-M. Bak and K.-B. Kim, *Electrochemistry Communications*, 2010, 12, 1768-1771.
- 5. J. Liu, K. Song, P. A. van Aken, J. Maier and Y. Yu, Nano letters, 2014.
- 6. X. Hao and B. M. Bartlett, Advanced Energy Materials, 2013, 3, 753-761.
- C. Han, Y. He, B. Li, H. Li, J. Ma, H. Du, X. Qin, Q. Yang and F. Kang, *ChemSusChem*, 2014, 7, 2567-2574.
- G.-N. Zhu, H.-J. Liu, J.-H. Zhuang, C.-X. Wang, Y.-G. Wang and Y.-Y. Xia, *Energy & Environmental Science*, 4, 4016-4022.
- H. Li, L. Shen, X. Zhang, J. Wang, P. Nie, Q. Che and B. Ding, *Journal of power sources*, 2013, 221, 122-127.
- H. Li, L. Shen, K. Yin, J. Ji, J. Wang, X. Wang and X. Zhang, *Journal of Materials Chemistry A*, 2013, 1, 7270-7276.
- C. Chen, Y. Huang, H. Zhang, X. Wang, G. Li, Y. Wang, L. Jiao and H. Yuan, *Journal of Power Sources*, 2015, 278, 693-702.
- 12. X. Jia, Y. Lu and F. Wei, Nano Research, 2016, 9, 230-239.
- 13. L. Fan, X. Tan, T. Yu and Z. Shi, RSC Adv., 2016, 6, 26406-26411.
- K.-T. Kim, C.-Y. Yu, C. S. Yoon, S.-J. Kim, Y.-K. Sun and S.-T. Myung, *Nano Energy*, 2015, 12, 725-734.
- 15. Lin Yu Yang, Hui Zhong Li, Jun Liu, Sha Sha Tang, Ya Kun Lu, Si Te Li, Jie Min, Ning Yan and Ming Lei, *Journal of Materials Chemistry A*, 2013, **00**, 1-8.
- J. Liu, K. Tang, K. Song, P. A. van Aken, Y. Yu and J. Maier, *Physical Chemistry Chemical Physics*, 2013, 15, 20813.
- G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, K. Nakanishi and T. Abe, *Advanced Energy Materials*, 2015, 5, n/a-n/a.

X. Feng, H. Zou, H. Xiang, X. Guo, T. Zhou, Y. Wu, W. Xu, P. Yan, C. Wang, J.-G. Zhang and Y. Yu, ACS Applied Materials & Interfaces, 2016, 8, 16718-16726.