| Raw | 60 ºC 30 min  | 60 ºC 60 min  | 60 ºC 90 min  | 60 ºC 120 min  |
|-----|---------------|---------------|---------------|----------------|
| Raw | 80 °C 30 min  | 80 ºC 60 min  | 80 ºC 90 min  | 80 ºC 120 min  |
| Raw | 100 °C 30 min | 100 °C 60 min | 100 °C 90 min | 100 °C 120 min |

# **Electronic Supplementary Information**

**Fig. S1.** Dissolution of ball-milled wood in DMSO/[Emin]OAc solvent system under different temperatures (Optical microscopy).



Fig. S2. <sup>31</sup>P-NMR spectra of the lignin fractions isolated from poplar wood

# Table S1

| Samples      | Crystalline region | Amorphous region | CrI <sup>a</sup> (%) |
|--------------|--------------------|------------------|----------------------|
| Raw          | 1.00               | 4.08             | 19.68                |
| R-raw-60 °C  | 1.00               | 3.15             | 24.10                |
| R-raw-80 °C  | 1.00               | 2.81             | 26.26                |
| R-raw-100 °C | 1.00               | 3.68             | 21.36                |

Quantification of the raw and regenerated poplar wood by CP/MAS <sup>13</sup>C-NMR

<sup>a</sup> Crystallinity index

 $CrI~(\%) = I_{Crystalline~region} / ~I_{Crystalline~region+Amorphous~region}$ 

## Table S2

| Labels                | $\delta_C / \delta_H (ppm)$ | Assignment                                                                                           |
|-----------------------|-----------------------------|------------------------------------------------------------------------------------------------------|
| C <sub>β</sub>        | 52.9/3.45                   | $C_{\beta}$ -H <sub><math>\beta</math></sub> in phenylcomaran structures(C)                          |
| $\mathbf{B}_{\beta}$  | 53.5/3.05                   | $C_{\beta}$ -H <sub><math>\beta</math></sub> in resinol substructures(B)                             |
| -OCH <sub>3</sub>     | 55.6/3.72                   | C-H in methoxyls                                                                                     |
| $A_{\gamma}$          | 59.5/3.70 and 3.39          | $C_{\gamma}$ -H <sub><math>\gamma</math></sub> in $\beta$ -O-4' substructures(A)                     |
| $D_{\beta}$           | 59.7/2.73                   | $C_{\beta}$ -H <sub><math>\beta</math></sub> in spirodienone substructures(D)                        |
| $I_{\gamma}$          | 61.4/4.10                   | $C_{\gamma}$ -H <sub><math>\gamma</math></sub> in cinnamyl(sinapyl/coniferyl) alcohol end groups(I)  |
| $C_{\gamma}$          | 62.3/3.73                   | $C_{\gamma}$ -H <sub><math>\gamma</math></sub> in phenylcomaran structures(C)                        |
| $X_5$                 | 62.5/3.39                   | $C_5$ - $H_5 \beta$ -D-xylopyranoside substructures(X)                                               |
| $A'_{\gamma}$         | 63.1/4.29                   | $C_{\gamma}$ -H <sub><math>\gamma</math></sub> in $\gamma$ -acylated $\beta$ -O-4' substructures(A') |
| $\mathbf{B}_{\gamma}$ | 71.1/3.81 and 4.17          | $C_{\gamma}$ -H <sub><math>\gamma</math></sub> in resinol substructures(B)                           |
| $A_{\alpha}$          | 71.9/4.86                   | $C_{\alpha}$ -H <sub><math>\alpha</math></sub> in $\beta$ -O-4' substructures(A)                     |
| $D'_{\alpha}$         | 79.4/4.10                   | $C_{\alpha}$ -H <sub><math>\alpha</math></sub> in spirodienone substructures(D')                     |
| BE                    | 81.0/4.65                   | $C_{\alpha}$ -H <sub><math>\alpha</math></sub> in benzyl-ether (BE) linkage                          |
| $D_{\alpha}$          | 81.1/5.09                   | $C_{\alpha}$ -H <sub><math>\alpha</math></sub> in spirodienone substructures(D)                      |
| $A_{\beta}(G/H)$      | 83.4/4.43                   | $C_{\beta}$ -H <sub><math>\beta</math></sub> in $\beta$ -O-4' linked to a G/H unit(A)                |
| $\mathbf{B}_{\alpha}$ | 84.8/4.65                   | $C_{\alpha}$ -H <sub><math>\alpha</math></sub> in resinol substructures(B)                           |
| $A_{\beta}(S)$        | 85.8/4.11                   | $C_{\beta}$ -H <sub><math>\beta</math></sub> in $\beta$ -O-4' linked to a S unit(A)                  |
| $C_{\alpha}$          | 86.79/5.46                  | $C_{\alpha}$ -H <sub><math>\alpha</math></sub> in phenylcomaran structures(C)                        |
| S <sub>2,6</sub>      | 103.9/6.71                  | C <sub>2,6</sub> -H <sub>2,6</sub> in syringyl units(S)                                              |
| S' <sub>2,6</sub>     | 106.2/7.32                  | C <sub>2,6</sub> -H <sub>2,6</sub> in oxidized(C=O) phenolic syringyl units(S')                      |
| G <sub>2</sub>        | 110.9/6.96                  | C <sub>2</sub> -H <sub>2</sub> in guaiacyl units(G)                                                  |
| G <sub>5</sub>        | 114.9/6.76                  | $C_5$ - $H_5$ in guaiacyl units(G)                                                                   |
| G <sub>6</sub>        | 119.0/6.78                  | C <sub>6</sub> -H <sub>6</sub> in guaiacyl units(G)                                                  |
| H <sub>2,6</sub>      | 127.8/7.22                  | C <sub>2,6</sub> -H <sub>2,6</sub> in <i>p</i> -hydroxyphenyl units(S)                               |
| PB <sub>2,6</sub>     | 131.2/7.66                  | C <sub>2,6</sub> -H <sub>2,6</sub> in <i>p</i> -hydroxybenzoate units(S)                             |

Assignments of <sup>13</sup>C-<sup>1</sup>H correlation signals in the HSQC spectra of the lignin from poplar wood (according to the previous publications<sup>1-4</sup>).

## Reference

- 1 S. Ralph, J. Ralph, L. Landucciand L. Landucci. US Forest Prod. Lab., Madison, WI (http://ars. usda. gov/Services/docs. htm. 2004.
- 2 H. Kimand J. Ralph. Org. Biomol. Chem. 2010,8,576-591.
- 3 J. C. Del Río, J. Rencoret, P. Prinsen, A. n. T. Martínez, J. Ralphand A. Gutiérrez. J. Agric. Food Chem. 2012,60,5922-5935.
- 4 T.-Q. Yuan, S.-N. Sun, F. Xuand R.-C. Sun. J. Agric. Food Chem. 2011,59,6605-6615.

#### 2. Methods

#### 2.1. Structure elucidation of CELs and RCELs

#### **Acetylation of Lignin Samples**

About 50 mg of CEL and RECL were dissolved in a solution of dimethyl sulfoxide: 1-methylimidazole (2:1, v/v) 3mL and stirred without direct light at room temperature for 12 h. Acetic anhydride (1 mL) was added to the reaction mixture and continued reacting for 2 h. The reaction mixture was dropped slowly into 100 mL acid water (pH=2) to induce precipitation followed by centrifugation. The acetylated lignin was dissolved in tetrahydrofuran (THF) (2 mg/mL), and the solution was filtered through a 0.22  $\mu$ m filter. The filtered solution (20  $\mu$ L) was injected into the HPLC system and detected using an UV detector setting at 280 nm. THF was used as the mobile phase and the flow rate was 0.8 mL/min. Standard PL polystyrene samples were used for calibration. GPC analyses were run at least twice.

#### **2D-HSQC NMR**

About 50 mg of lignin was dissolved in 0.5 mL of DMSO- $d_6$  (99.8% D). For quantitative 2D-HSQC spectra, the Bruker standard pulse program hsqcetgpsi2 was used for HSQC experiments. The spectral widths were 5000 Hz and 20000 Hz for the <sup>1</sup>H- and <sup>13</sup>C-dimensions, respectively. The number of collected complex points was 1024 for <sup>1</sup>H-dimension with a recycle delay of 1.5 s. The number of transients was 64, and 256 time increments were always recorded in the <sup>13</sup>C-dimension. The <sup>1</sup>J<sub>CH</sub> used was 145 Hz. Prior to Fourier transformation, the data matrixes were zero filled up to 1024 points in the <sup>13</sup>C-dimension. Data processing was performed using standard Bruker Topspin-NMR software.

A quantitative analysis of the intensities of the HSQC cross-signal was performed according to the following formula: <sup>1-2</sup>

 $I(C_9)$  units =  $0.5I(S_{2,6}) + I(G_2)$ 

Where  $I(S_{2,6})$  is the integration of  $S_{2,6}$ , including S and S',  $I(G_2)$  is the integral value of  $G_2$ .  $I(C_9)$  represents the integral value of the aromatic ring. According to the internal standard ( $I(C_9)$ ), the amount of I(X)% could be obtained by the following formula:

 $I(X)\% = I(X)/I(C_9) \times 100\%$ 

Where I(X) is the integral value of the  $\alpha$ -position of A ( $\beta$ -O-4'), B ( $\beta$ - $\beta$ ), and C ( $\beta$ -5), the integration should be in the same contour level.

In the aromatic region,  $C_{2,6}$ -H<sub>2,6</sub> correlations from S units and  $C_2$ -H<sub>2</sub> correlation from G units were used to estimate the S/G ratio of lignin. The S/G ratio could be obtained by the following formula:  $S/G = 0.5I(S_{2/6})/I(G_2)$ 

### Quantitative <sup>31</sup>P NMR

20 mg lignin was dissolved in 500  $\mu$ L of anhydrous pyridine and deuterated chloroform (1.6:1, v/v) under stirring. This was followed by the addition 100  $\mu$ L of cyclohexanol (10.85 mg/mL in anhydrous pyridine and deuterated chloroform 1.6:1, v/v) as an internal standard and 100  $\mu$ L of Chromium (III) acetylacetonate solution (5 mg mL<sup>-1</sup> in anhydrous pyridine and deuterated chloroform 1.6:1, v/v) as relaxation reagent. The mixture was reacted with 100  $\mu$ L of phosphitylating reagent (2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholate, TMDP) for about 10 min and was transferred into a 5 mm NMR tube for subsequent NMR analysis.

### Reference

M. Sette, R. Wechselbergerand C. Crestini. *Chem–Eur.* 2011,17,9529-9535.
J.-L. Wen, S.-L. Sun, B.-L. Xue and R.-C. Sun. *Materials*. 2013,6,359-391.