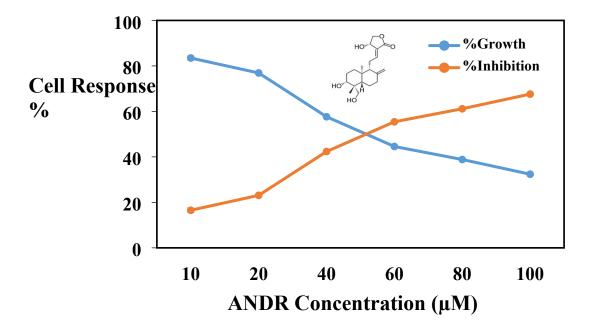
Elucidating the binding interaction of andrographolide with plasma proteins: biophysical and computational approach

Daniel Pushparaju Yeggoni[†], Christian Kuehne^I, Aparna Rachamallu^{II}, Rajagopal Subramanyam^{†*}

[†]Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India


Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charite-

Universitätsmedizin Berlin, CVK, Augustenburger Platz 1, 13353, Berlin, Germany.

^INational Institute of Animal Biotechnology, Axis Clinicals Building, Miyapur, Hyderabad, 500049, India

*Corresponding author RajagopalSubramanyam Department of Plant Sciences School of Life Sciences University of Hyderabad 500 046 India Tel: +91-40-23134572 Fax: +91-40-23010120 Email:srgsl@uohyd.ernet.in

Fig.SI 1.

Fig.SI 1. Cell response of ANDR. ANDR showing anti-cancer properties (A) against breast cancer cells (MCF-7) in a dose dependent manner. Cell growth was measured by the MTT assay and the IC_{50} values were calculated accordingly.

Fig.SI 2.

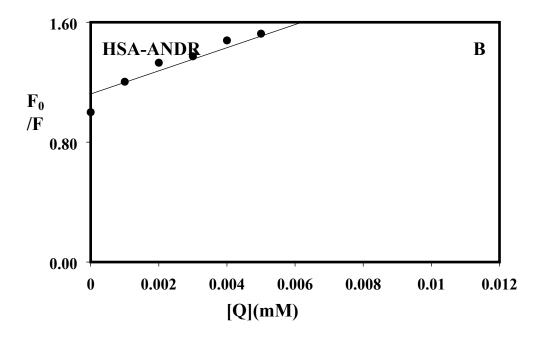
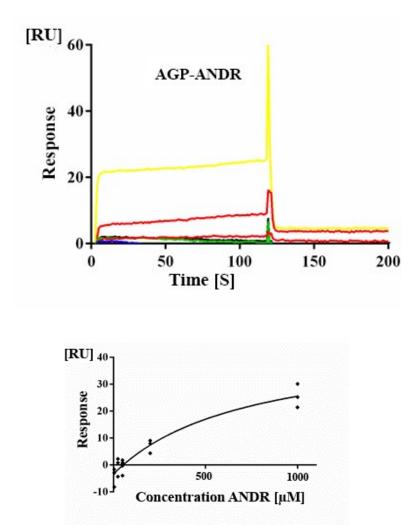



Fig.SI 2. Stern-Volmer plots of HSA-ANDR complexes showing fluorescence quenching constant (K_q). Here the plot is showing F_0/F against [Q] for ANDR.

Fig.SI 3.

Fig.SI 3. Sensorgrams of ANDR binding to AGP immobilized on a CM 5 sensor chip (top) and respective R_{eq} values fitted to the steady state isotherm binding model (bottom). Increasing concentrations of the analyte are

denoted by different colors: 5 μ M (blue), 25 μ M (black), 50 μ M (green), 200 μ M (red) and 1000 μ M (yellow) for ANDR–AGP.