Supporting Information

Formation and conversion of six temperature-dependent fluorescent Zn^{II}-complexes containing two *in situ* formed N-rich heterocyclic ligands

Qin Wei,^a Mei-Juan Wei,^a Yan-Jun Ou,^a ji-Yuan Zhang,^d Xia Huang,^a Yue-Peng Cai,^{*a,b,c} Li-Ping Si^{*a}

^aSchool of Chemistry and Environment, South China Normal University;

^bGuangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006, P.R. China;

^cGuangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, Guangzhou 510080, P. R. China;

^dGuangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China.

Contents

- 1. Table S1. Crystallographic data and structure refinement summary for 1 to 6.
- 2. Table S2. Selected bond lengths and angles for compounds 1-6.
- 3. Table S3. Hydrogen bond parameters of compounds 1-6.
- **4.** Scheme S1. Possible *in situ* forming mechanism for L²⁻³.
- 5. Figure S1. Powder X-ray diffraction (PXRD) patterns (Experimental and Simulated) of 1-6.
- 6. Figure S2. TGA curves of complexes 1-6.
- Figure S3. Visible emission spectra of complexes 1-6 in the solid state at room temperature.
- Figure S4. UV absorption spectra for interaction between Zn²⁺ and L¹+2-Pfd in DMF+pyridine.
- Figure S5. The job plot showing the binding ratio between Zn²⁺ and ligand (L¹+2-Pfd) (1:1) in DMF+pyridine.
- 10. Figure S6. Fluorescence emission spectra of L¹+2-Pfd upon addition of ZnCl₂ in DMF+ pyridine. λ_{ex} = 355 nm at 100°C ([L¹+2-Pfd] =0.10 mM; [Zn²⁺] =0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.131, 0.132, 0.133, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20 mM.
- 11. Figure S7. Fluorescence emission spectra of L¹+2-Pfd upon addition of ZnCl₂ in DMF+ pyridine. λ_{ex} = 355 nm at 120°C ([L¹+2-Pfd] =0.10 mM; [Zn²⁺] =0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.131, 0.132, 0.133, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20 mM.
- 12. Figure S8. Fluorescence emission spectra of 3 upon addition of NaN₃ in DMF+pyridine.
 λ_{ex} = 355 nm at 80°C ([3] =0.10 mM; [N₃⁻] =0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.131, 0.132, 0.133, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20 mM.
- 13. Figure S9. Fluorescence emission spectra of 4 upon addition of NaN₃ in DMF+pyridine.
 λ_{ex} = 355 nm at 80°C ([4] =0.10 mM; [N₃⁻] =0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.131, 0.132, 0.133, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20 mM.

Complex	1	2	3
Empirical formula	$C_{18}H_{14}Cl_2N_4Zn$	$C_{18}H_{14}N_{10}Zn$	$C_{36}H_{28}Cl_4N_8OZn_2$
Formula weight	422.60	435.76	1246.63
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/n	C2/c	P2 ₁ /c
a (Å)	7.229(3)	18.130(3)	15.388(6)
b (Å)	14.023(6)	18.615(3)	12.271(5)
<i>c</i> (Å)	19.027(7)	13.827(2)	19.046(6)
α (°)	90	90	90
в (°)	95.403(5)	128.341(2)	122.12(2)
γ (°)	90	90	90
<i>V</i> (Å ³)	1920.3(13)	3660.1(10)	3046.0(2)
Z	4	8	2
ho (cald.) (mg m ⁻³)	1.462	1.582	1.359
<i>Т</i> (К)	298(2)	293(2)	298(2)
μ (mm ⁻¹)	1.564	1.371	0.688
R _{int}	0.0355	0.0395	0.0543
GOF	1.027	1.021	1.040
$R_1 \left[I > 2 \sigma(I) ight]^a$	0.0320	0.0455	0.0491
wR ₂ (all data) ^b	0.0748	0.1137	0.1328

Table S1. Crystallographic data and structure refinement summary for 1 to 3.

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^b $_W R_2 = \{\sum [_W (F_0^2 - F_c^2)^2] / \sum (F_0^2)^2 \}^{1/2}$, where w = $1/(\sigma^2 (F_0^2) + (aP)^2 + bP)$, $P = (F_0^2 + 2F_c^2) / 3$

Complex	4	5	6
Empirical formula	$C_{36}H_{26}Cl_4N_8Zn_2$	$C_{36}H_{26}N_2OZn_2$	$C_{36}H_{26}N_{20}Zn_2$
Formula weight	843.19	869.51	869.51
Crystal system	monoclinic	monoclinic	triclinic
Space group	P2 ₁ /c	P2 ₁ /n	P-1
<i>a</i> (Å)	8.730(2)	8.884(2)	8.0218(8)
b (Å)	13.047(4)	19.730(5)	10.0798(10)
<i>c</i> (Å)	15.560(4)	21.404(6)	11.6154(12)
α (°)	90	90	83.9840(10)
6 (°)	96.344(3)	93.623(4)	83.1740(10)
γ (°)	90	90	76.6970(10)
<i>V</i> (Å ³)	1761.5(8)	3744.1(18)	904.60(16)
Ζ	2	4	1
ho (cald.) (mg m ⁻³)	1.590	1.543	1.596
<i>Т</i> (К)	296(2)	296(2)	296(2)
μ (mm ⁻¹)	1.705	1.340	1.386
R _{int}	0.0298	0.0672	0.0168
GOF	1.052	1.050	1.032
$R_1 \left[I > 2 \sigma(I) ight]^a$	0.0395	0.0600	0.0483
wR ₂ (all data) ^b	0.1007	0.1514	0.1387

(to be continued) **Table S1.** Crystallographic data and structure refinement summary for **4** to **6**.

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^b $_W R_2 = \{\sum [_W (F_0^2 - F_c^2)^2] / \sum (F_0^2)^2 \}^{1/2}$, where w = $1/(\sigma^2 (F_0^2) + (aP)^2 + bP)$, $P = (F_0^2 + 2F_c^2) / 3$

		1	
N(2)-Zn(1)-Cl(2)	102.98(10)	Cl(1)-Zn(1)-N(3) 89.91(10)	
N(2)-Zn(1)-Cl(1)	148.81(10)	N(1)-Zn(1)-N(3)	139.66(13)
Cl(2)-Zn(1)-Cl(1)	106.89(6)	7n(1)-N(2) 2.030(4)	
N(2)-Zn(1)-N(1)	83.55(14)	Zn(1)-Cl(2) 2.050(4) Zn(1)-Cl(2) 2.2602(14)	
Cl(2)-Zn(1)-N(1)	107.21(10)	Zn(1)-Cl(1) 2.2626(16)	
Cl(1)-Zn(1)-N(1)	95.87(11)	Zn(1)-N(1)	2.275(3)
N(1)-Zn(2)-N(3)	71.82(14)	Zn(1)-N(3)	2.385(4)
Cl(2)-Zn(1)-N(3)	109.13(9)		
		2	
N(8)-Zn(1)-N(5)	113.4(2)	N(2)-Zn(1)-N(4)	74.61(12)
N(8)-Zn(1)-N(2)	128.08(18)	N(1)-Zn(1)-N(4)	160.18(12)
N(5)-Zn(1)-N(2)	118.04(15)	Zn(1)-N(8) 1.950(4)	
N(8)-Zn(1)-N(1)	96.03(16)	Zn(1)-N(5)	2.007(5)
N(5)-Zn(1)-N(1)	95.31(15)	Zn(1)-N(2)	2.026(3)
N(2)-Zn(1)-N(1)	86.39(12)	Zn(1)-N(1)	2.212(3)
N(8)-Zn(1)-N(4)	100.08(15)	Zn(1)-N(4)	2.283(3)
N(5)-Zn(1)-N(4)	88.86(15)		
		3	
N(2)-Zn(1)-Cl(1)	118.98(18)	3 Cl(1)-Zn(1)-Cl(2)	118.66(13)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1)	118.98(18) 85.2(3)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2)	118.66(13) 93.44(18)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1)	118.98(18) 85.2(3) 97.40(18)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4)	118.66(13) 93.44(18) 73.5(3)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1) N(2)-Zn(1)-Cl(2)	118.98(18) 85.2(3) 97.40(18) 122.01(17)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2)	118.66(13) 93.44(18) 73.5(3) 2.027(6)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1) N(2)-Zn(1)-Cl(2) Cl(1)-Zn(1)-N(4)	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1) N(2)-Zn(1)-Cl(2) Cl(1)-Zn(1)-N(4) N(1)-Zn(1)-N(4)	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-N(1)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1) N(2)-Zn(1)-Cl(2) Cl(1)-Zn(1)-N(4) N(1)-Zn(1)-N(4) Cl(2)-Zn(1)-N(4)	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-N(1) Zn(1)-Cl(2)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(4)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1) N(2)-Zn(1)-Cl(2) Cl(1)-Zn(1)-N(4) N(1)-Zn(1)-N(4) Cl(2)-Zn(1)-N(4)	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-N(1) Zn(1)-N(1) Zn(1)-Cl(2) 4	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(4)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1) N(2)-Zn(1)-Cl(2) Cl(1)-Zn(1)-N(4) N(1)-Zn(1)-N(4) Cl(2)-Zn(1)-N(4) N(2)-Zn(1)-Cl(2)	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18) 117.00(13)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-Cl(1) Zn(1)-Cl(2) 4 Cl(1)-Zn(1)-N(3)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(4) 90.13(13)
N(2)-Zn(1)-Cl(1) N(2)-Zn(1)-N(1) Cl(1)-Zn(1)-N(1) N(2)-Zn(1)-Cl(2) Cl(1)-Zn(1)-N(4) N(1)-Zn(1)-N(4) Cl(2)-Zn(1)-N(4) N(2)-Zn(1)-Cl(2) N(2)-Zn(1)-Cl(1)	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18) 117.00(13) 121.41(12)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-Cl(1) Zn(1)-Cl(2) 4 Cl(1)-Zn(1)-N(3) N(1)-Zn(1)-N(3)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(4) 90.13(13) 155.69(19)
$\begin{array}{c} N(2)-Zn(1)-Cl(1)\\ N(2)-Zn(1)-N(1)\\ Cl(1)-Zn(1)-N(1)\\ N(2)-Zn(1)-Cl(2)\\ Cl(1)-Zn(1)-N(4)\\ N(1)-Zn(1)-N(4)\\ Cl(2)-Zn(1)-N(4)\\ \end{array}$	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18) 117.00(13) 121.41(12) 121.29(7)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-Cl(2) 4 Cl(1)-Zn(1)-N(3) N(1)-Zn(1)-N(3) Zn(1)-N(2)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(6) 2.279(4) 90.13(13) 155.69(19) 2.019(4)
$\begin{array}{c} N(2)-Zn(1)-Cl(1)\\ N(2)-Zn(1)-N(1)\\ Cl(1)-Zn(1)-N(1)\\ N(2)-Zn(1)-Cl(2)\\ Cl(1)-Zn(1)-N(4)\\ N(1)-Zn(1)-N(4)\\ Cl(2)-Zn(1)-N(4)\\ \end{array}$	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18) 117.00(13) 121.41(12) 121.29(7) 83.99(17)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-Cl(1) Zn(1)-Cl(2) 4 Cl(1)-Zn(1)-N(3) N(1)-Zn(1)-N(3) Zn(1)-N(2) Zn(1)-Cl(2)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(4) 90.13(13) 155.69(19) 2.019(4) 2.2359(17)
$\begin{array}{c} N(2)-Zn(1)-Cl(1)\\ N(2)-Zn(1)-N(1)\\ Cl(1)-Zn(1)-N(1)\\ N(2)-Zn(1)-Cl(2)\\ Cl(1)-Zn(1)-N(4)\\ N(1)-Zn(1)-N(4)\\ Cl(2)-Zn(1)-N(4)\\ \end{array}$	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18) 117.00(13) 121.41(12) 121.29(7) 83.99(17) 98.33(11)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-Cl(2) 4 Cl(1)-Zn(1)-N(3) N(1)-Zn(1)-N(3) N(1)-Zn(1)-N(3) Zn(1)-N(2) Zn(1)-Cl(2) Zn(1)-Cl(2) Zn(1)-Cl(1)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(4) 90.13(13) 155.69(19) 2.019(4) 2.2359(17) 2.2570(16)
$\begin{array}{c} N(2)-Zn(1)-Cl(1) \\ N(2)-Zn(1)-N(1) \\ Cl(1)-Zn(1)-N(1) \\ N(2)-Zn(1)-Cl(2) \\ Cl(1)-Zn(1)-N(4) \\ N(1)-Zn(1)-N(4) \\ Cl(2)-Zn(1)-N(4) \\ \end{array}$	118.98(18) 85.2(3) 97.40(18) 122.01(17) 99.2(2) 157.5(3) 91.87(18) 117.00(13) 121.41(12) 121.29(7) 83.99(17) 98.33(11) 93.05(11)	3 Cl(1)-Zn(1)-Cl(2) N(1)-Zn(1)-Cl(2) N(2)-Zn(1)-N(4) Zn(1)-N(2) Zn(1)-Cl(1) Zn(1)-Cl(2) 4 Cl(1)-Zn(1)-N(3) N(1)-Zn(1)-N(3) Zn(1)-N(2) Zn(1)-Cl(2) Zn(1)-N(2) Zn(1)-Cl(2) Zn(1)-Cl(1) Zn(1)-N(1)	118.66(13) 93.44(18) 73.5(3) 2.027(6) 2.219(3) 2.279(6) 2.279(4) 90.13(13) 155.69(19) 2.019(4) 2.2359(17) 2.2570(16) 2.308(4)

Table S2. Selected bond lengths (Å) and bond angles (^o) for compounds 1-6.

Cl(2)-Zn(1)-N(3)	100.55(14)		
		5	
N(4)-Zn(1)-N(5)	113.1(2)	Zn(1)-N(4)	1.954(5)
N(4)-Zn(1)-N(2)	136.3(2)	Zn(1)-N(5)	1.972(6)
N(5)-Zn(1)-N(2)	110.3(2)	Zn(1)-N(2) 2.029(4)	
N(4)-Zn(1)-N(3)	92.5(2)	Zn(1)-N(3)	2.268(5)
N(5)-Zn(1)-N(3)	100.4(2)	Zn(1)-N(1)	2.342(5)
N(2)-Zn(1)-N(3)	84.50(18)	Zn(2)-N(14)	1.994(6)
N(4)-Zn(1)-N(1)	94.4(2)	Zn(2)-N(15) 2.000(6)	
N(5)-Zn(1)-N(1)	99.6(2)	Zn(2)-N(12)	2.038(5)
N(2)-Zn(1)-N(1)	73.42(17)	Zn(2)-N(13)	2.284(5)
N(3)-Zn(1)-N(1)	154.26(18)	Zn(2)-N(11)	2.282(5)
N(14)-Zn(2)-N(15)	109.0(3)	N(12)-Zn(2)-N(13)	83.58(18)
N(14)-Zn(2)-N(12)	103.9(2)	N(14)-Zn(2)-N(11)	106.6(2)
N(15)-Zn(2)-N(12)	146.2(2)	N(15)-Zn(2)-N(11)	89.6(2)
N(14)-Zn(2)-N(13)	101.7(2)	N(12)-Zn(2)-N(11) 73.43(19)	
N(15)-Zn(2)-N(13)	97.1(2)	N(13)-Zn(2)-N(11) 146.93(19)	
		6	
N(10)-Zn(1)-N(2)	130.94(16)	N(9)-Zn(1)-N(1)	98.38(15)
N(10)-Zn(1)-N(9)	113.91(18)	N(3)-Zn(1)-N(1)	155.43(14)
N(2)-Zn(1)-N(9)	113.42(16)	Zn(1)-N(2)	2.029(3)
N(10)-Zn(1)N(3)	96.21(14)	Zn(1)-N(3) 2.216(3)	
N(2)-Zn(1)-N(3)	86.71(12)	Zn(1)-N(10)	1.979(4)
N(9)-Zn(1)-N(3)	101.25(14)	Zn(1)-N(9)	1.988(4)
N(10)-Zn(1)-N(1)	89.15(15)	Zn(1)-N(1)	2.388(3)
N(2)-Zn(1)-N(1)	71.93(13)		

D-H···A	d (D-H) (Å)	d (H…A) (Å)	d (D…A) (Å)	∠ DHA (°)
		1		
$C1-H1\cdots Cl_1$	0.93	2.64	3.310	129.7
C_{12} - H_{12} - Cl_2 #1	0.93	2.87	3.681	146.2
C_{15} - H_{15} - Cl_2 #1	0.93	2.86	3.700	150.8
C_9 - H_9 ···Cl ₂ #2	0.93	2.89	3.721	149.3
$\pi^{a}\cdots\pi^{b}$			3.760	
		2		
C ₆ -H _{6A} …N ₇ #7	0.97	2.61	3.461	145.8
C ₆ -H _{6B} …N ₁₀ #8	0.97	2.54	3.504	171.8
C_{12} - H_{12} ···N ₆ #9	0.92	2.58	3.415	148.5
C_{16} - H_{16} ···N ₅ #10	0.93	2.73	3.617	158.9
C ₁₇ -H ₁₇ …N ₇ #11	0.93	2.70	3.386	131.0
$\pi^{a} \cdots \pi^{b}$			3.752	
		3		
C_{12} - H_{12} - Cl_2 #12	0.93	2.76	3.588	147.6
C_{12} - H_{12} - Cl_2 #13	0.93	2.76	3.588	147.6
$\pi^{a}\cdots\pi^{b}$			3.873	
		4		
C_{10} - H_{10} ··· Cl_1 #14	0.93	2.84	3.662	147.2
C_{10} - H_{10} ··· Cl_1 #15	0.93	2.84	3.662	147.2
C ₁₈ -H ₁₈ …Cl ₂ #5	0.93	2.93	3.779	152.2
C ₁₈ -H ₁₈ …Cl ₂ #16	0.93	2.93	3.779	152.2
C ₃ -H ₃ …Cl ₁ #17	0.93	2.93	3.550	124.7
C ₃ -H ₃ …Cl ₁ #18	0.93	2.93	3.550	124.7
5				
C ₂ -H ₂ …N ₆ #19	0.93	2.728	3.403	130.2
C ₈ -H ₈ …N ₁₇ #20	0.93	2.554	3.373	147.1
C_{10} - H_{10} ···N_{10}#21	0.93	2.660	3.524	154.7
C_{25} - H_{25} ···N ₂₀ #22	0.93	2.395	3.200	144.7
C_{34} - H_{34} ···N ₅ #23	0.93	2.720	3.452	136.2
6				
C_2 - H_2 ···N ₁₀ #24	0.93	2.520	3.312	143.2
C_2 - H_2 ···N ₁₀ #25	0.93	2.520	3.312	143.2
C ₃ -H ₃ …N ₇ #26	0.93	2.370	3.152	141.5
C ₃ -H ₃ …N ₇ #27	0.93	2.370	3.152	141.5
C_{10} - H_{10} ···N ₇ #28	0.93	2.706	3.596	160.4
C ₁₀ -H ₁₀ …N ₇ #29	0.93	2.706	3.596	160.4
$\pi^{a} \cdots \pi^{b}$			3.921	

Table S3. Hydrogen bond parameters of compounds 1-6.

*Symmetry transformations used to generate equivalent atoms: **#1** 1-x, 2-y, 2-z; **#2** 0.5-x, 0.5+y,1.5-z; **#3** 2-x,0.5+y,1.5-z; **#4** 2-x,2-y,2-z;**#5** 2-x,1-y,2-z;**#6** 2-x,-0.5+y,1.5-z; **#7** x, -y, 0.5+z, **#8** 0.5-x, -0.5+y, 0.5-z, **#9** 1-x, y, 0.5-z, **#10**

0.5+x, 0.5-y, 0.5+z, #11 0.5-x, 0.5-y, -z, #12 0.5+x, 0.5-y, 0.5+z, #13 1.5-x, 0.5-y, -z, #14 1+x, y, z, #15 1-x, -y, 2-z, #16 x, -1+y, z, #17 2-x, -0.5+y, 1.5-z, #18 x, 0.5-y, 0.5+z, #19 1+x, 1.5-y, 0.5+z, #20 1-x, 0.5+y, 0.5-z, #21 -1+x, 1.5-y, -0.5+z, #22 -x, 0.5+y, 0.5-z, #23 2-x, 1-y, 1-z, #24 1-x, 1-y, 1-z, #25 1+x, -1+y, -1+z, #26 1-x, -y, 1-z, #27 1+x, y, -1+z, #28 1+x, -1+y, z, #29 1-x, 1-y, -z.

 π^{a} ... π^{b} shows the distance between centroids of pyridyl/imidazol ring and pyridyl/imidazol ring.

Scheme S1.

For ligands L²⁻³, the possible formation mechanism is outlined in Scheme **S1**. Initially, the carbanion formed at C6 atom from the intermediate **B** increases the nucleophility at the heterocyclic nitrogen atom N3, which facilitates a nucleophilic attack at the imino carbon C7 to form C-N bond, resulting in the formation of intermediate **C**. And then coordination of the nitrogen atom of picolinaldehyde to Cd²⁺ enhances the electrophilicity of the carbon atom of the aldehyde, triggering the formation of an alcoholic intermediate **D** via the nucleophilic attack of **C** to the carbonyl electrophile. Finally, cleavage of the C–O bond in **D** gives a radical intermediate **E**, next two competitive reactions may occur for **E**, which subsequently either obtaining proton from intermediate **A** to furnish the formation of ligand L², or undergoing dimerization to give L³. Because of the free rotation of C-C single bond and the steric hindrance from its four connecting groups, ligand L³ shows two conformations of *cis-/trans*-form in formed compounds referring to C-C single bond such as complexes **3** and **5** (*cis*-form, dynamic stability) and **4** and **6** (*trans*-form, thermodynamic stability). Moreover, by increasing reaction temperature or prolonging reaction time, complexes **3** and **5** may be irreversibly transformed into **4** and **6**.

Figure S1.

Figure S2.

12

Figure S3.

Figure S4.

Figure S5.

Figure S6

0 -

Wavelength (um)

Figure S9.

