Supporting Information

Efficient Pd@MIL-101(Cr) Hetero-Catalysts for 2-Butyne-1,4-diol

Hydrogenation exhibiting high selectivity

Dongdong Yin, ^a Chuang Li, ^a Hangxing Ren, ^a Osama Shekhah, ^b Jinxuan Liu ^{c,*} and Changhai Liang ^{a,*}

^a Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian 116024, China. E-mail: changhai@dlut.edu.cn

^b Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi

Arabia

^c Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China. E-mail:

jinxuan.liu@dlut.edu.cn

Correspondence to: changhai@dlut.edu.cn; jinxuan.liu@dlut.edu.cn

Fig. S1. Powder X-ray diffraction patterns of samples: (a) 0.38 wt% Pd@MIL-101(Cr), (b) 0.62 wt% Pd@MIL-101(Cr), (c) 1.82 wt% Pd@MIL-101(Cr).

Fig. S2. TG curve of MIL-101(Cr) under air atmosphere.

Fig. S3. XPS spectra of (a) $Pd(\eta^{3}-C_{3}H_{5})(\eta^{5}-C_{5}H_{5})@MIL-101(Cr)$ and (b) Pd@MIL-101(Cr).

Fig. S4. Effect of Pd content of catalysts on the conversion of BYD and the selectivity of different products.

Fig. S5. TEM images of 1.82 wt% Pd@MIL-101(Cr) before and after reaction.

Fig. S6. FTIR spectrum of Pd@MIL-101(Cr) after 5-cycle reaction.

Reported	Conversion	Selectivity	Condition	Referenc
catalyst	(%)	(%)		е
Pd/Zn/CaCO ₃	100	99	303∼353 K, 0.8∼3.5 MPa	1
Pd/TiO ₂ -	83	99	298 K	2
additives				
Pd-Pb	30	97	298 K	3
Pd/C	100	60~75	303~333 К	3
Pd/ACF	100	70	303 K, 0.6 MPa	4
Pt/ CaCO ₃	78	73	393 K, 1 MPa	5
Pd/Resin	100	90	293 K, 0.1 MPa	6
Bio-Pd	75	98	313 K, 0.2 MPa	7
Bio-Pt	100	70	313 K, 0.2 MPa	8
Pt-Bi/C	25	90	313 K, 0.2 MPa	8

Table. S1. A summary of literature on hydrogenation of butynediol to butenediol

References

- 1. R. V. Chaudhari, M. G. Parande, P. A. Ramachandran, P. H. Brahme, H. G. Vadgaonkar and R. Jaganathan, *AIChE Journal*, 1985, **31**, 1891-1903.
- 2. R. V. Chaudhari, R. Jaganathan, D. S. Kolhe, G. Emig and H. Hofmann, *Applied Catalysis*, 1987, **29**, 141-159.
- 3. M. H. Winterbottom. J, Viladevall. J, et al., Stud. Surf. Sci. Catal., 1997, 108, 59-67.
- 4. L. Kiwiminsker, A. Eric Joannet and A. Renken, *Industrial & Engineering Chemistry Research*, 2005, **44**, 6148-6153.
- 5. C. V. Rode, P. R. Tayade, J. M. Nadgeri, A. R. Jaganathan and R. V. Chaudhari, *Organic Process Research & Development*, 2006, **10**, 278-284.
- 6. A. Knapik, A. Drelinkiewicz and A. Waksmundzka-Góra, Catalysis Letters, 2008, 122, 155-166.
- 7. J. Wood, L. Bodenes, J. Bennett, K. Deplanche and L. E. Macaskie, *Industrial & Engineering Chemistry Research*, 2010, **49**, 980-988.
- 8. V. I. Isaeva, O. P. Tkachenko, E. V. Afonina, L. M. Kozlova, G. I. Kapustin, W. Grünert, S. E. Solov'Eva, I. S. Antipin and L. M. Kustov, *Microporous & Mesoporous Materials*, 2013, **166**, 167-175.