Supplementary information to 'Atomic Layer Deposition of Vanadium Oxides for Thin-film Lithium-Ion Battery Applications'

Felix Mattelaer,* Kobe Geryl, Thomas Dobbelaere, Geert Rampelberg, Jolien

Dendooven, and Christophe Detavernier

Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, 9000 Gent, Belgium

E-mail: felix.mattelaer@Ugent.be

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

In-situ XRD

To demonstrate the formation of the phases that are examined electrochemically, in-situ Xray diffraction is done during the formation of the phases. Table 1 shows an overview of the atmosphere, temperature and initial film conditions used to obtain all phases between VO₂ and V₂O₅. Figures 1 to 6 show the resulting isXRD plots on the current collector substrate, demonstrating the successful phase formation.

Phase	ALD	Ambient	Temperature
	reactant		$(^{\circ}C)$
VO_2 (B)	O_3	$\mathrm{He}+3.7\mathrm{Pa}\;\mathrm{O}_2$	420
$\mathrm{VO}_2~(\mathrm{M1})$	H_2O	$\mathrm{He} + 18\mathrm{Pa}\;\mathrm{O}_2$	450
$\mathrm{V_6O_{13}}$	O_3	$\mathrm{He}+3.7\mathrm{Pa}\;\mathrm{O}_2$	550
$\mathrm{V_4O_9}$	H_2O	Ambient air	356
V_3O_7	O_3	$\mathrm{He} + 48\mathrm{Pa}\mathrm{O}_2$	560
$\mathrm{V_2O_5}$	$\rm H_2O$ or $\rm O_3$	Ambient air	500

Table 1: Conversion paths from the as-deposited films to their crystallised and oxidized forms, on the Pt-substrate.

Figure 1: In-situ XRD during the oxidation of ozone-grown amorphous VO₂ to crystalline VO₂ B on the Pt substrate. The temperature was ramped linearly to 420 °C in an ambient consisting of He + 3.6Pa O₂.

Figure 2: In-situ XRD during the oxidation of water-grown amorphous VO₂ to crystalline VO₂ M1 on the Pt substrate. The temperature was ramped to 450 °C in an ambient consisting of He + 18Pa O₂.

Figure 3: In-situ XRD during the oxidation of ozone-grown amorphous VO₂ to crystalline V_6O_{13} on the Pt substrate. The temperature was ramped to 550 °C in an ambient consisting of He + 3.6Pa O₂.

Figure 4: In-situ XRD during the oxidation of water-grown amorphous VO_2 to crystalline V_4O_9 on the Pt substrate. The temperature was ramped to 356 °C in ambient air.

Figure 5: In-situ XRD during the oxidation of ozone-grown amorphous VO_2 to crystalline V_3O_7 on the Pt substrate. The temperature was ramped to 560 °C in He + 48Pa O_2 .

Figure 6: In-situ XRD during the oxidation of ozone-grown amorphous VO₂ to crystalline V₂O₅ on the Pt substrate. The temperature was ramped linearly to 500 °C in ambient air.

Cyclic voltammetry on the Pt substrate and the VO_2 M1 phase

Figure 7 shows the cyclic voltammograms of the VO_2 M1 film and of the uncoated Pt substrate. Some similarities can be seen between the peak positions of both cyclic voltammograms. Furthermore, galvanostatic charge-discharging showed the film displayed almost no storage capacity, indicating almost no bulk energy storage, and thus mostly surface-related electrochemical activity is present for these films.

Figure 7: Cyclic voltammetry on the Pt substrate and VO₂ M1 thin film, performed at $10 \,\mathrm{mV \, s^{-1}}$ in a 3-electrode setup with lithium as counter and reference electrodes, and 1M LiClO₄ in PC as electrolyte.