Supporting Information for

High Mechanical Strength in Zn₄B₆O₁₃ with Unique Sodalite-cage Structure

Yi Yang^{a,e}, Xingxing Jiang^a*, Pifu Gong^{a,e}, Maxim S. Molokeev^{b,f}, Xiaodong Li^c, Yanchun Li^c, Xiang Wu^d, Yicheng Wu^a, Zheshuai Lin^{a,e}*

^aCenter for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China, email: <u>zslin@mail.ipc.ac.cn</u> (Z.S.,Lin); xxjiang@mail.ipc.ac.cn (X.X. Jiang)

^bLaboratory of Crystal Physics, Kirensky Institute of Physics, SBRAS Krasnoyarsk 660036, Russia

^cBeijing Synchrotron Radiation Facility, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049, China

^dState Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

^eUniversity of the Chinese Academy of Sciences, Beijing 100049, China

^fDepartment of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia

Contents

Figure S1 The XRD patterns at ambient condition of ZBO collected by laboratory

- XRD facility with Cu radiation
- Figure S2 The diffractograms of ZBO at various pressure

Figure S3 The high pressure X-ray diffraction patterns of ZBO

Figure S4 Refinement plots for XRD patterns of ZBO

Figure S5 Density of states of ZBO at various pressure

Table S1 Lattice parameters of ZBO at various pressure

Table S2 The B-O bond, Zn-O2 bond and \angle B-O-B angle at various pressure

- Table S3 The bandgap at various pressure
- Table S4 The CCDC number of the CIF files under different pressure

Figure S1 The XRD patterns at ambient condition of ZBO collected by laboratory XRD facility with Cu radiation .

Figure S2 The diffractograms of ZBO at various pressure.

Figure S3 The high pressure X-ray diffraction patterns of ZBO

Figure S4 Refinement plots for XRD patterns at (a) 0 GPa and (b) 10.63 GPa of ZBO. The observed (×), calculated (red solid line), and difference profiles (blue solid line) are shown along with the reflection positions (magenta vertical bars)

Figure S5 Density of states of ZBO at various pressure. (a) the density of states and partial density of states at 0GPa (b) the density of states of Zn and O atom under 0GPa and 10.63GPa. It is clear that the electronic energy levels near the top of valence band (VB) and the bottom of conduction band (CB) are dominantly composed of the zinc and oxygen orbitals, indicating that the band gap of ZBO is determined mainly by the electron transition within the Zn–O bonds. As pressure increase from 0 to 10.63GPa, the contraction of Zn-O bonds reinforces the hybridization between zinc and oxygen atoms, which lower the energy of the electron states at the top of VB. Thus it requires crossing wider energy range for electrons to transit from VB to CB, so the band gap is broadened.

Pressure(GPa)	Lattice parameter(Å)
0	7.4957(7)
0.50	7.4741(9)
0.94	7.4690(1)
1.41	7.4584(3)
2.92	7.4414(3)
3.92	7.4354(3)
5.02	7.4180(3)
6.52	7.4161(3)
8.92	7.4024(4)
10.63	7.3881(4)

Table S1 Lattice parameters of ZBO at various pressure

Pressure (GPa)	B-O bond(Å)	Relative value	Zn-O2 bond(Å)	Relative value	∠B-O-B(°)	Relative value
0	1.472	1.000	1.979	1.000	128.301	1.000
0.50	1.470	0.999	1.972	0.996	128.068	0.998
0.94	1.469	0.998	1.971	0.996	128.048	0.998
1.41	1.468	0.997	1.968	0.994	127.843	0.996
2.92	1.465	0.995	1.963	0.992	127.745	0.996
3.92	1.464	0.994	1.961	0.991	127.718	0.995
5.02	1.462	0.993	1.956	0.988	127.587	0.994
6.52	1.461	0.993	1.956	0.988	127.560	0.994
8.92	1.459	0.991	1.952	0.986	127.447	0.993
10.63	1.457	0.990	1.948	0.984	127.346	0.993
10.63	1.457	0.990	1.948	0.984	127.346	0.993

Table S2 The B-O bond, Zn-O2 bond and \angle B-O-B angle at various pressure

Pressure(GPa)	Eg (eV)	UV absorption edge(nm)
0	5.341	232.2
0.50	5.401	229.6
0.94	5.407	229.3
1.41	5.426	228.5
2.92	5.463	227.0
3.92	5.475	226.5
5.02	5.512	225.0
6.52	5.513	224.9
8.92	5.538	223.9
10.63	5.566	222.8

Table S3 The bandgap at various pressure

Table S4 The CCDC number of the CIF files under different pressure

CIF files	CCDC
Zn ₄ B ₆ O ₁₃ _0	1519591
Zn ₄ B ₆ O ₁₃ _0.50	1519593
Zn ₄ B ₆ O ₁₃ _0.94	1519594
Zn ₄ B ₆ O ₁₃ _1.41	1519595
Zn ₄ B ₆ O ₁₃ 2.92	1519596
Zn ₄ B ₆ O ₁₃ 3.92	1519597
Zn ₄ B ₆ O ₁₃ 5.02	1519598
Zn ₄ B ₆ O ₁₃ 6.52	1519599
Zn ₄ B ₆ O ₁₃ 8.92	1519600
Zn ₄ B ₆ O ₁₃ _10.63	1519592