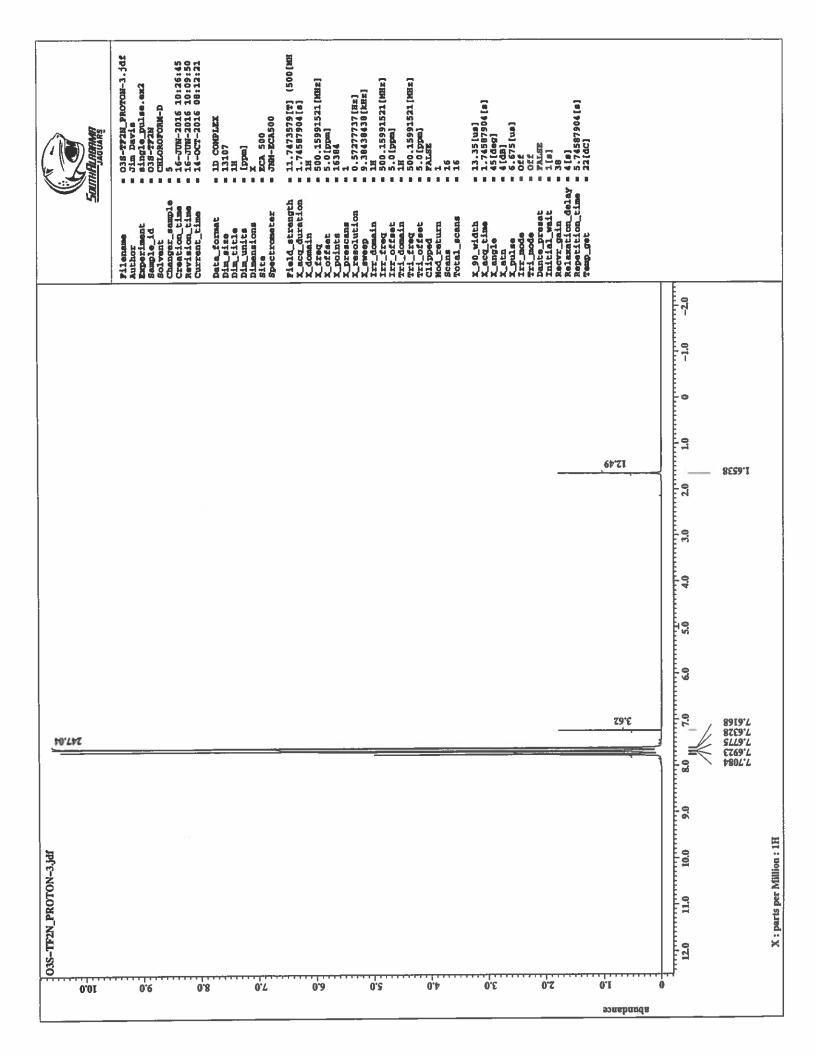
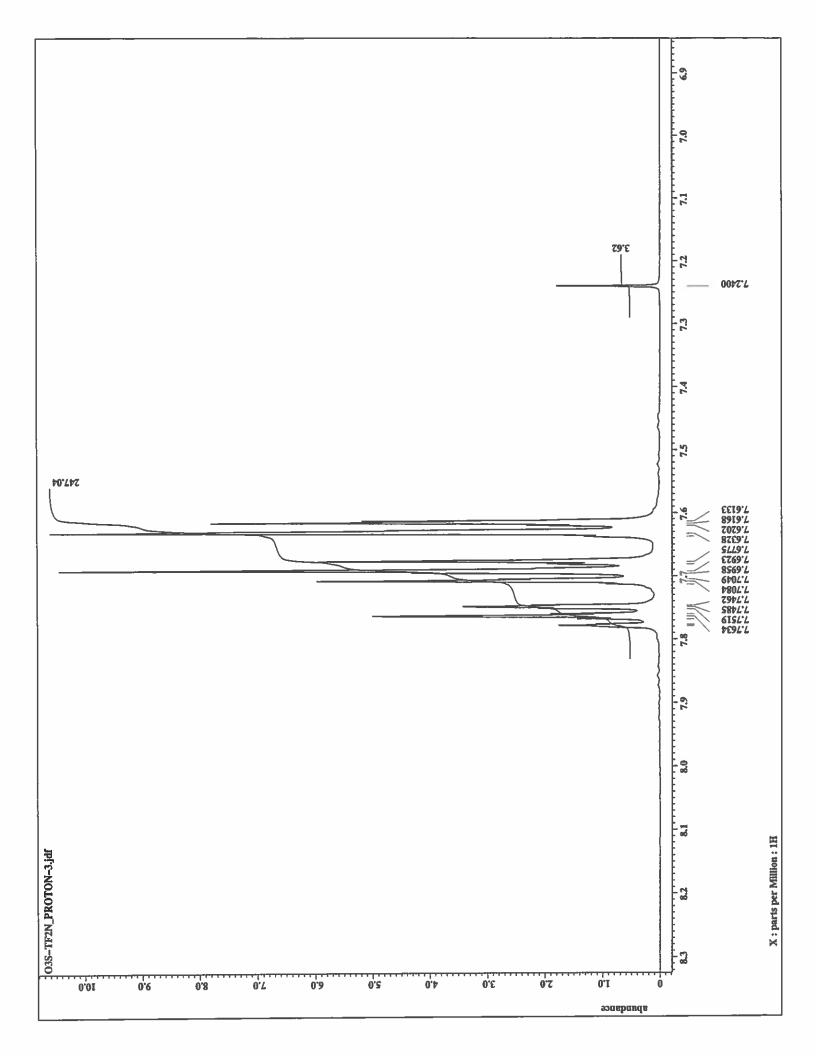
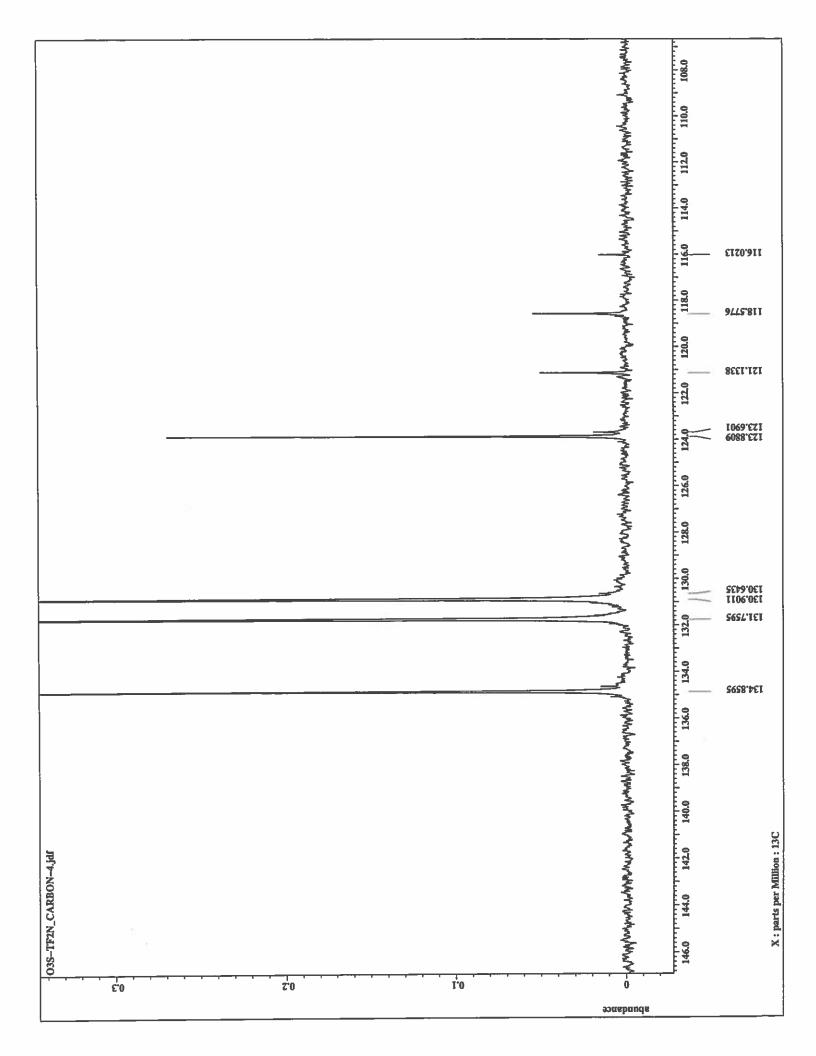
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

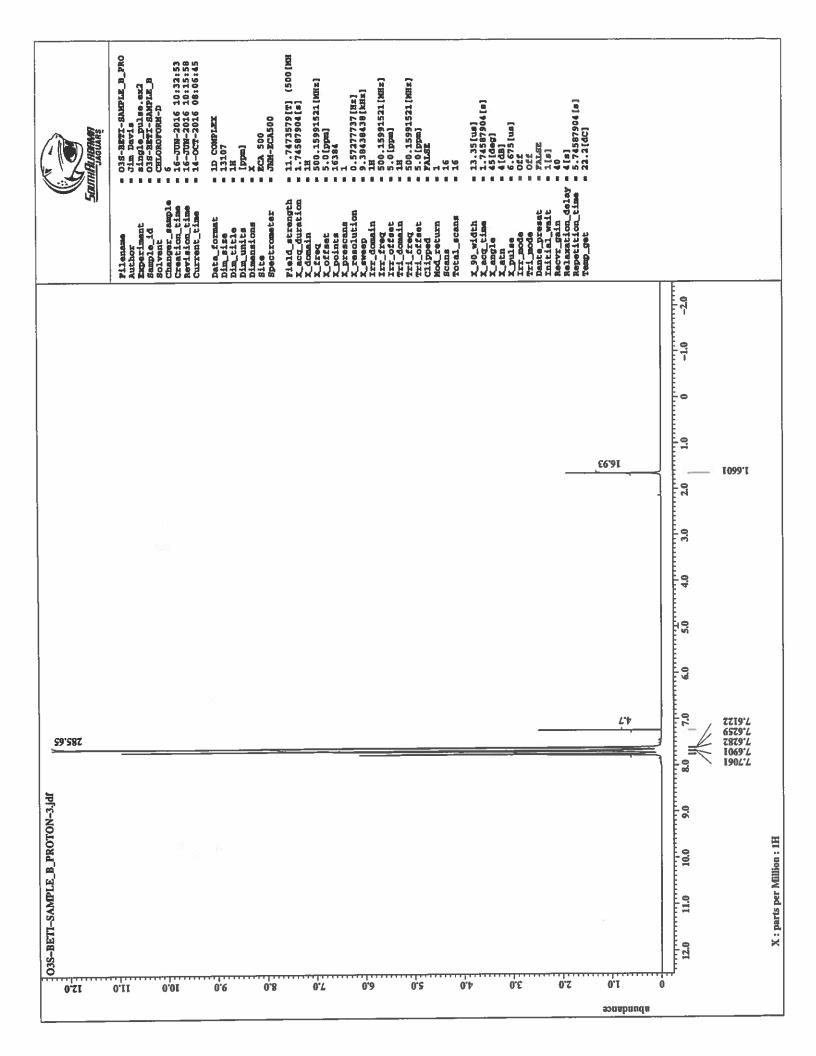

Thermal extremophiles: Triarylsulfonium ionic liquids stable in air for 90 days at 300 $^{\circ}\text{C}$

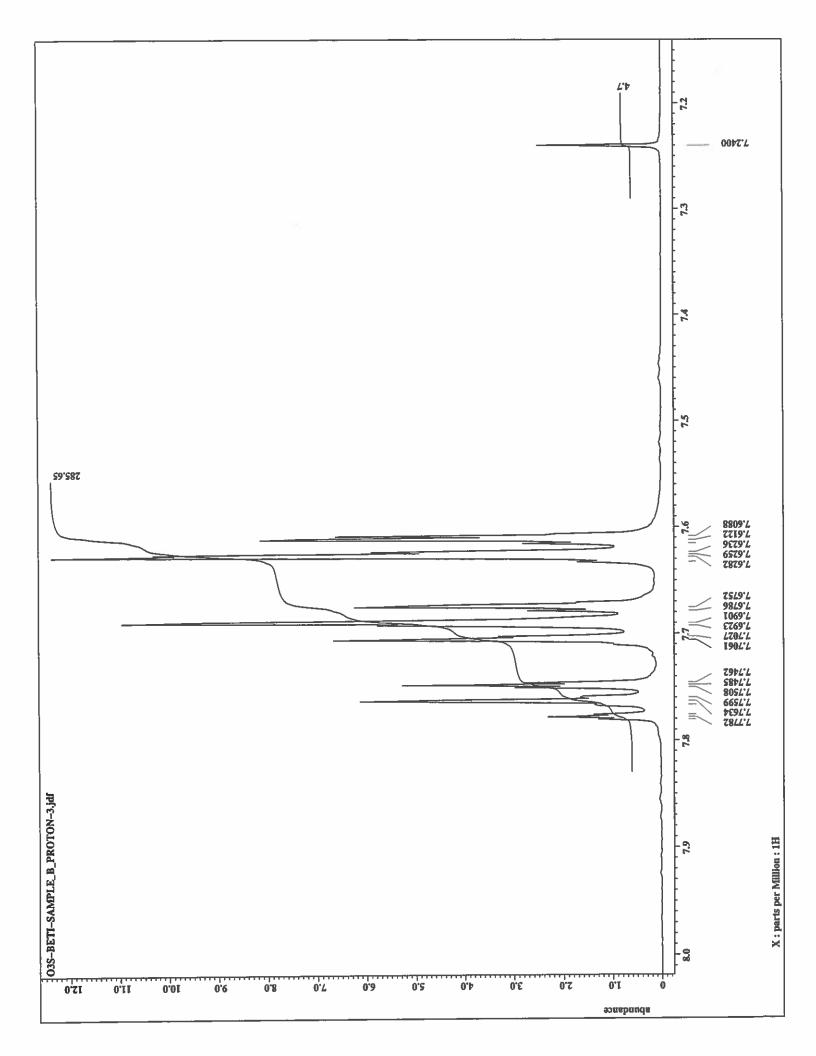

Benjamin Siu,^a Cody G. Cassity,^b Adela Benchea,^b Taylor Hamby,^b Jeffrey Hendrich,^b Katie J. Strickland,^b Andrzej Wierzbicki,^a Richard E. Sykora,^b E. Alan Salter,^a Richard. A. O'Brien,^b Kevin N. West,*^{a‡} and James H. Davis, Jr.*^{b†}

- a Department of Chemical & Biomolecular Engineering, University of South Alabama
- b Department of Chemistry, University of South Alabama

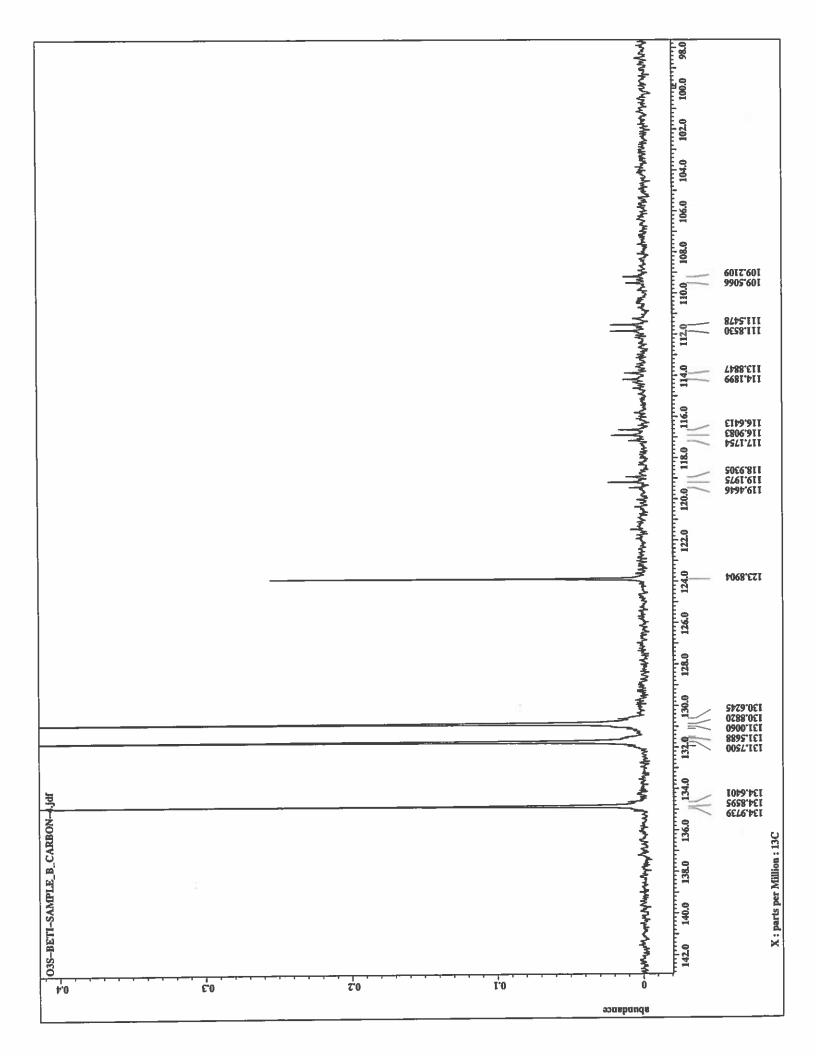

Elemental Analysis

- G	JD-SULFONIUM-1			AMABAMA SOUTH ALABAMA	AL ABAMA
intic Bl	ntic Blvd. Suite M		Company	Ompany/School	
, GA 30071	0071		Address (Address CHEM BLDG 223	
nticmi	nticmicrolab.com		City State Zin	City State 7in MOBILE, AL, 36688	
!	JAMES DA	SIN.	Name V	Name JAMES DAVIS	Date 10/12/2016
r/Super ⊀	/Supervisor:		Phone	Phone (251) 751-0520	
,11				Single X	Duplicate
int	Theory		Found	Flements CHNOSE	30
	44.20	44.10	•	Present:	
				Analyze CHN	
	2.78	270		Hygroscopic	Explosive
	C	2004		M.P. UNK	B.P. NONE
	7.58	40 4		To be dried: Yes X	SS X No Time 4H
				Rush Service X	Rush Service X Rush savkæ guaranteas analyses will be completed and results available by 5 PM EST
	-			Include Email Ad	Include Email Address or FAX # Below
				jdavis@sc	jdavis@southalabama.edu
Seceived		OCI 14 2016	Date Completed		OCT 14 2016
, c,					

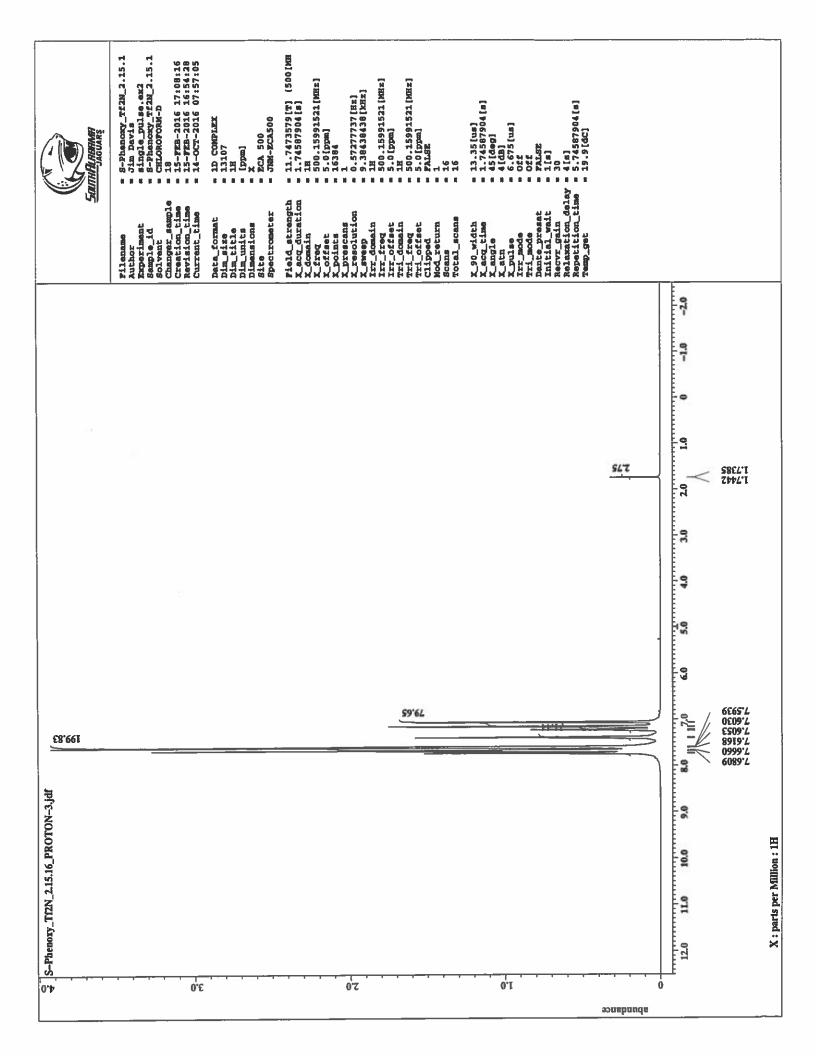

South Pagentes	= 038-TF2M_CARBOM-3.jdf = Jim Davis = single pulse_dec = 038-TF2M = CHLOROFOSM-D ble = 16-JUM-2016 20:50:25 = 16-JUM-2016 20:33:27 = 14-OCT-2016 08:10:41		11.7473579[T] 500[MH 10.7473579[T] 500[MH 13.7529768 MHZ] 125.75529768 MHZ] 125.29768 MHZ] 125.29768 MHZ] 13.756 13.1959034 MZ] 13.5081761 MHZ] MHZ] 13.5081761 MHZ] MHZ] 13.5081761 MHZ] MHZ] MHZ] MHZ] MHZ] MHZ]	*** ******			
	Filename Author Experiment Sample_id Solvent Changer_sample Creation_time Revision_time Revision_time	Date_format Dim_size Dim_title Dim_units Dimensions Site Spectrometer	Field strength X_acq_duration X_domain X_fred X_offset X_points X_points X_poscens X_resolution X_resolution X_resolution Irr_domain Irr_freq Irr_freq Irr_freq Irr_freq	Mod_return Scans Scans Total_scans X_90_width X_acq_time X_angle X_ath X_pulse X_pulse X_pulse	IXI. noise Decoupling Initial_wait Nos_time Nos_time Recvr_gain Relaxation_delay Repetition_time	- F F	•
							120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 120.0 110.0 10.0 0 -10.0 -20.0 120.0
			-				\$657,161 1100,061
O3S-TF2N_CARBON-3,jdf					****	magarana andres	220.0 210.6 200.0 190.0 180.0 170.0 160.0 150.0 140.0
či	1.1 1.2	0°I 6°0	8.0 7.0 8.0	\$*0 * *0	6.0 2.0	abundance 0.1	

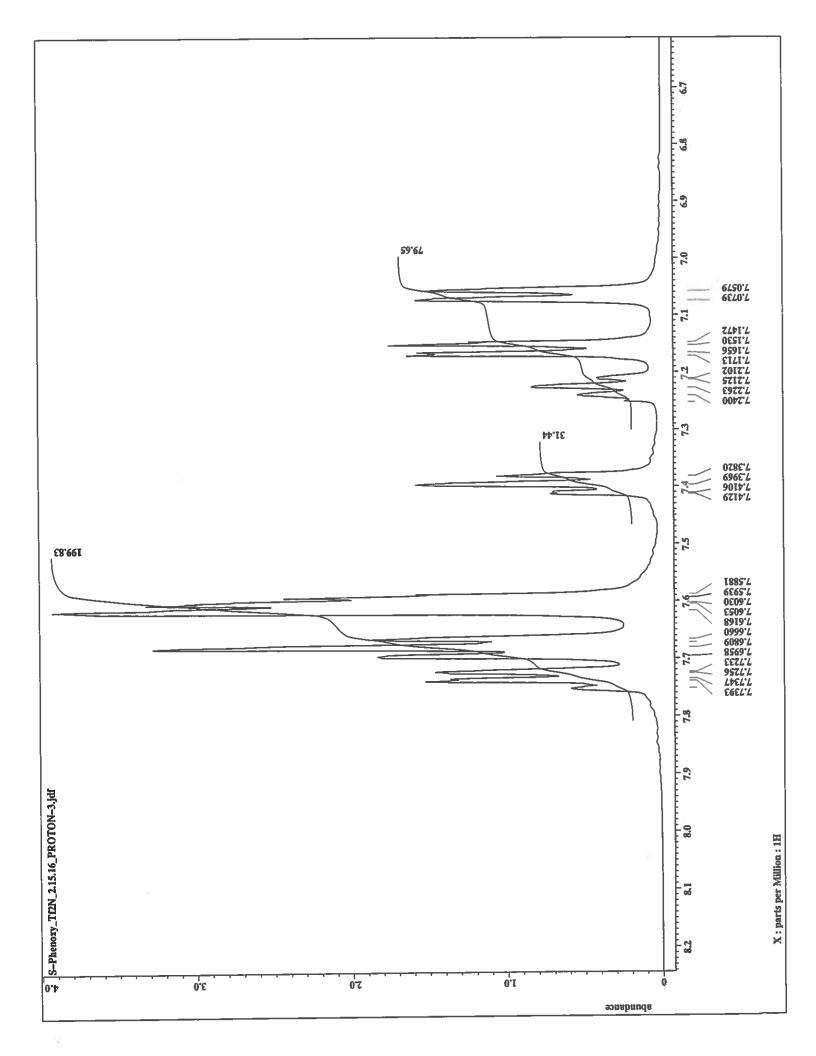


Sound Albertage	Pilename	
O3S-TF2N_FLUORINE-3.jdf	25.0.25.0.25.0.25.0.25.0.25.0.26.0.281 0.71 0.21 0.21 0.21 0.21 0.21 0.01 0.00 0.00	30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -150.0 -160.0 -160.0 -100.0 -100.0 -110.0 -120.0 -150.0 -160.0 -

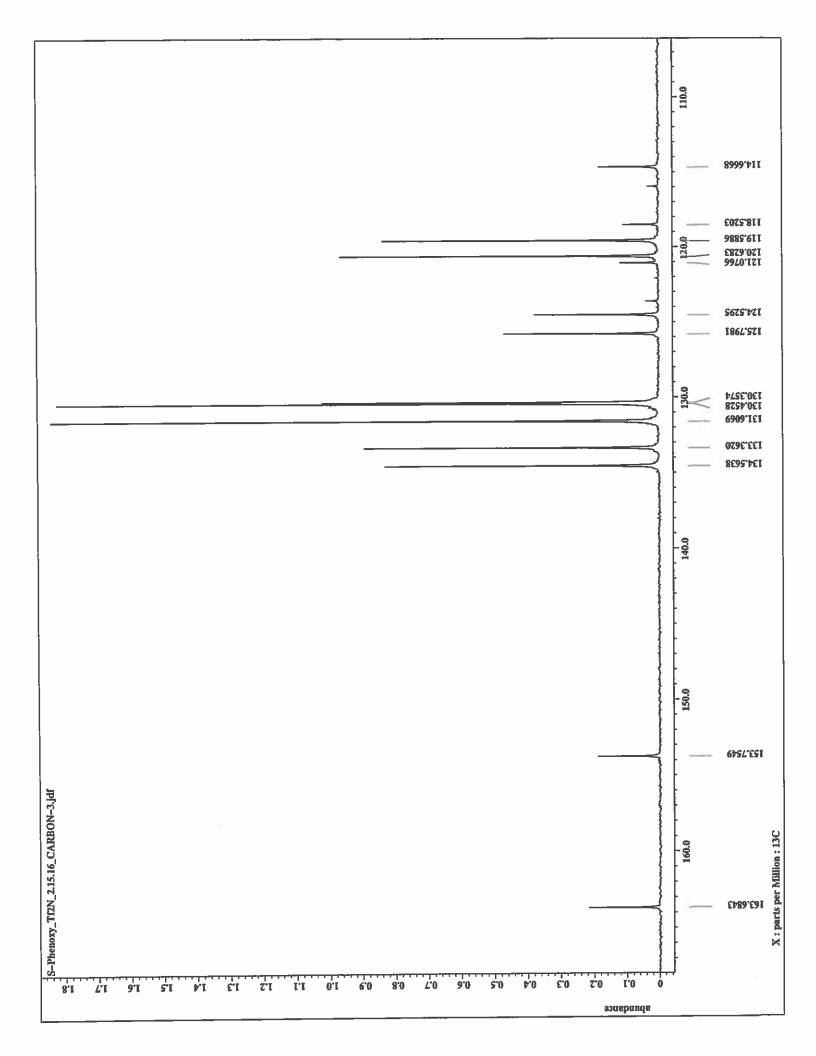

Elemental Analysis

3-OL of	SULFONIUM 2 -	JD-SULFONIUM 2 - RECRYSIALLIZED	Companieshool U SOUTH ALABAMA
antic Bl	antic Rivd. Suite M		CHEMISTRY
s, GA 30071	0071		Address CHEM BLDG 223
anticmic	anticmicrolab.com	Č	8
		3	ly, State, 219 JAMES DAVIS Date 10/17/2016
or/Super	or/Supervisor: DAVIS		520
#5			Single X Dublicate
ent	Theory	Found	HNOSE
	44.08	6. t3	Present:
•	7	F	Analyze CHN
-	2.35	23	Hygroscopic Explosive
	0.10	2.24	
7	2.10		Temp 60C Vac HIGH Time 4 H
			12 2 2
			Include Email Address or FAX # Below
			jdavis@southalabama.edu
Received	1001	1 8 2016	Date Completed DC 1 8 70 16
arks:			

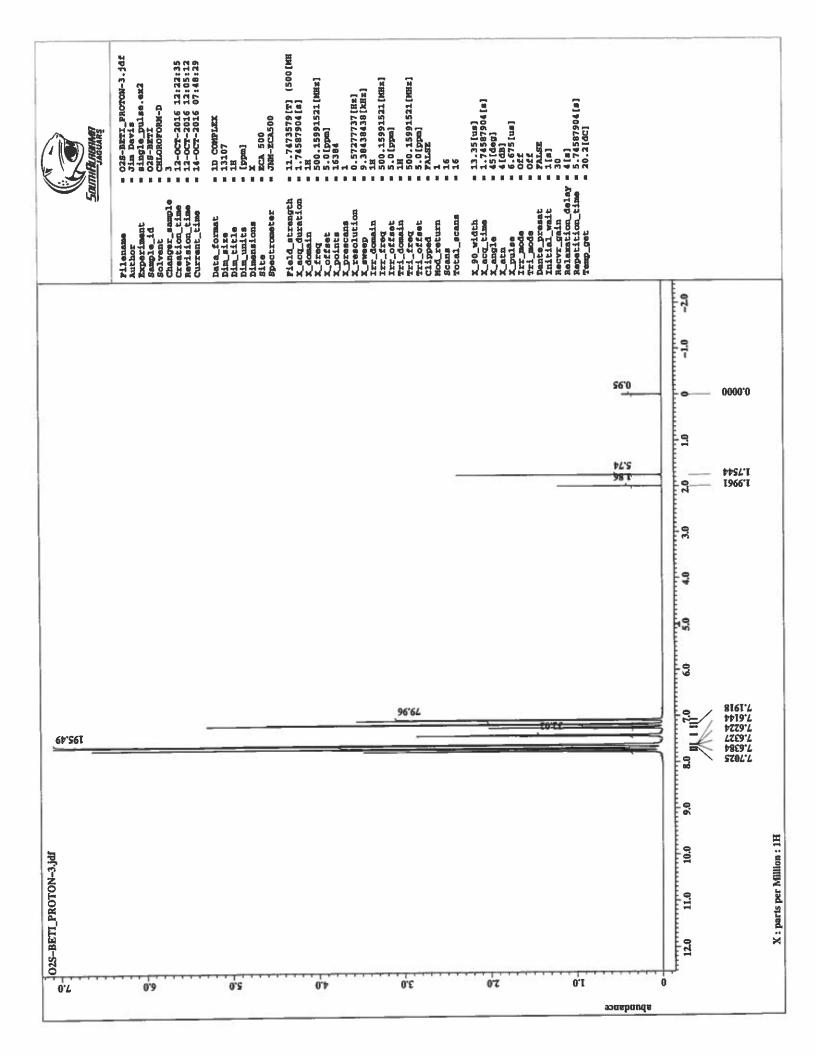

Sainthusening	Filename	Data_format = 1D COMPLEX Dim_size = 26214 Dim_title = 13C Dim_units = 15C Dim_units = 15C Site = 15C Site = 15C Site = 15C	a a	a		IXX_ath_noo = 20.5[dB] IXX_noise = WALXZ Decoupling = TRUZ Initial_wait = 1[s] Noo = 20.5[dB]	Recharation_delay = 2[s] Repetition_time = 2.83361792[s] Temp_get = 22.6[dC]	440.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0	\$658.4EI \$088.6EI \$0000.77 \$247.57	
03S-BETT-SAMPLE_B_CARBON-3.jdf	T*T 0*I	6.0 8.0	0 <i>L</i> '0	9'0 \$') b'0	€0	2.0 I.0.	220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 10		

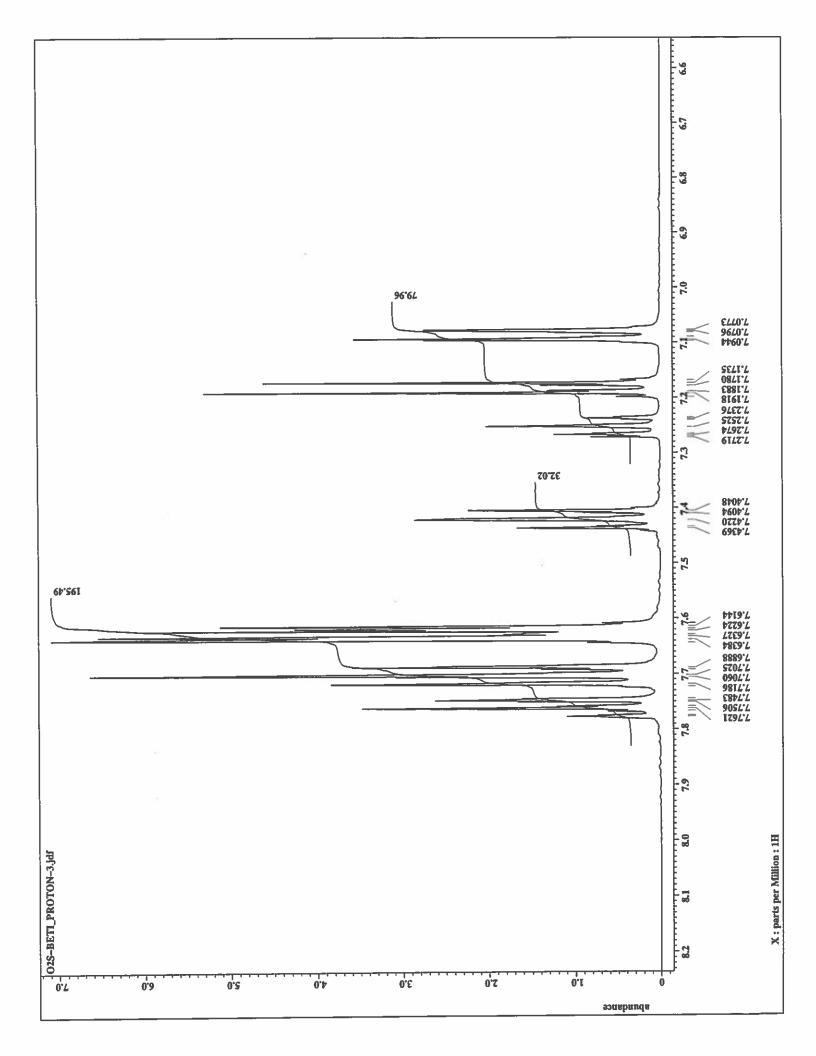


Sound Jacobs	= 038-BETI-SAMPLE_B_FLU = 5imgle_pulse.ex2 = 038-BETI-SAMPLE_B = CHLONOPORM-D = 6-JUA-2016 11:02:33 = 16-JUM-2016 08:03:27	= 1D COMPLEX = 52428 = 197 = [ppm] = X = ECA 500 = JUM-ECA500		= 470.62046084[MHz] = 5[ppm] = 19F = 470.62046084[MHz] = 5[ppm] = 7ALSE = 16 = 16	******			
	Filename Author Experiment Sample_id Sample_id Gleant Changer_sample Creetion_time Current_ctime	Data_format Dim_size Dim_title Dim_units Dim_units Site Spectrometer	Field_strangth X_acq_duration X_domain X_freq X_offset X_points X_prints X_resolution X_sweep	irr_commin irr_offset Trr_offset Trri_offset Clipped Mod_return Scens	X_90_width X_acq_time X_angle X_ath X_pulse Trr_mode	Dante_presat Initial_wait Nevr_gain Ralawation_delay Repetition_time Temp_get		
03S-BETT-SAMPLE_B_FLUORINE-3.jdf	19.0 20.0 21.0 22.0 E						30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.4170.0	X: parts per Million : 19F
0.23.0 24.0	19.0 20.0 21.0 22.0	0.81 0.71 0.81	051 071 071 071	0.11 0.01 0.9 (8 0'2 0'9 (nsbruds 0.1. 0	

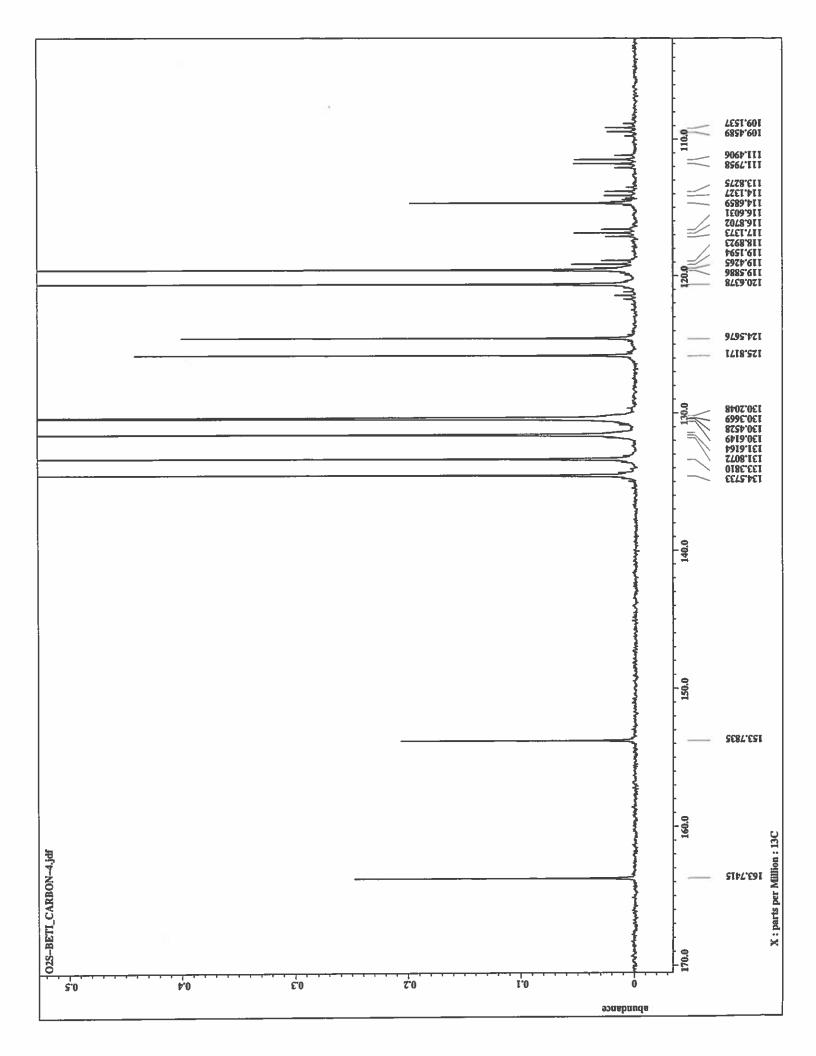

Elemental Analysis

No. JD-S	ULFONIUM-3-R	No. JD-SULFONIUM-3-RECRYSTALLIZED		Company/School U SOUTH ALABAMA
Hantic Bly	Hantic Blvd. Sulte M			Dent CHEMISTRY
ss, GA 30071	0071		O sedrose O	Address CHEM BLDG 223
tlanticmic	tlanticmicrolab.com		Address Air Nin	8
	9774		City, Otate, Lip.	Name JAMES DAVIS Date 10/17/2016
sor/Super	sor/Supervisor: DAVIS		Phone (520
#50				Circle Division T
nent	Theory	Found	nd	Single [A] Cupricate [_]
C	49.13	49.27		Present:
		1		for:
I	3.01	238	*.)	pic Explo
Z	2.20	221		d: Yes X No
				Rush Service X completed and results available by 5PM EST
				Include Email Address or FAX # Below
	24			jdavis@southalabama.edu
he Received	100T	18 2016	Date Completed	npleted 000 18 2016
marks:				

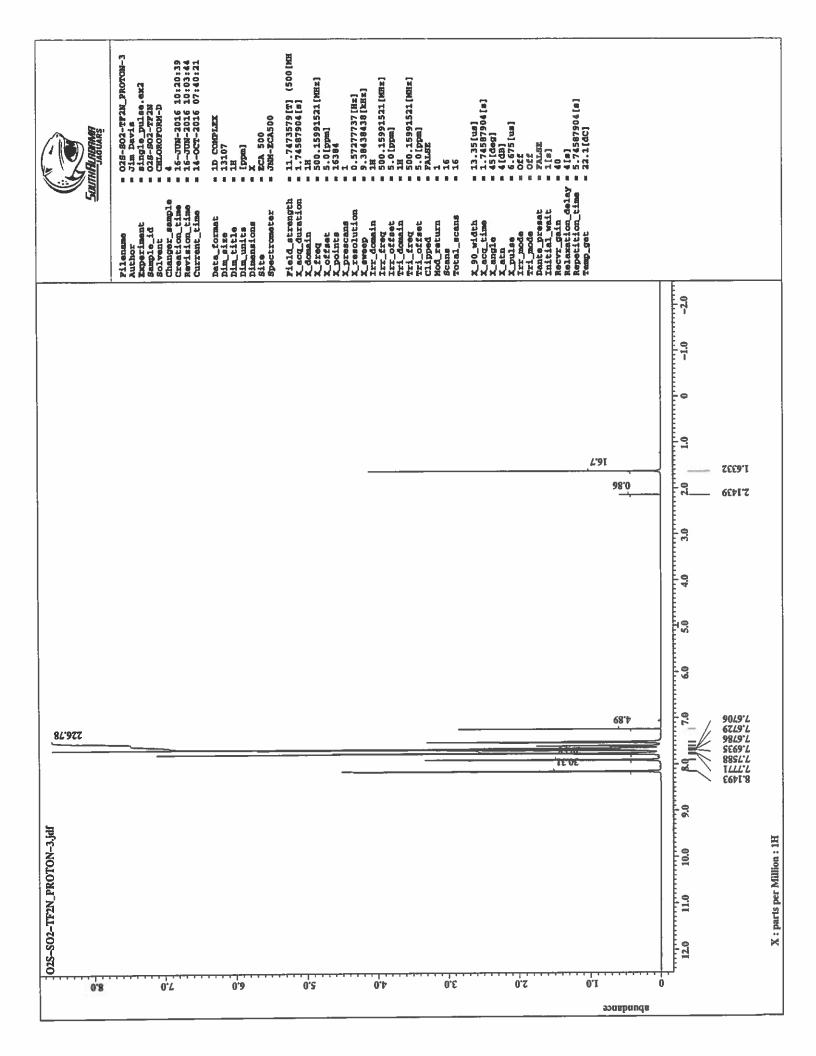

Soundhusen	Filename = S-Phenoxy_Tf2N_3.15.1 Author = Jim Davis Experiment = single_pulse_dec Sample_id = S-Phenoxy_Tf2N_2.15.1 Solvent = S-Phenoxy_Tf2N_2.15.1 Changer_sample = 18 Creation_time = 15-FEB-2016_20:35:52 Current_ctime = 14-OCT-2016_07:54:12		44	X_resolution	e in the	tr_dec tr_noe olse	Noe time = INII Noe time = 2(8) Noe time = 2(8) Recvr.gain = 60 Relaxminon_delay = 2(8) Repetition_time = 2.835792[8]		150.0 140.0 130.0 120.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0	6487.621 8682.051 8682.051 8683.051 8683.051 8683.051 8683.051 8683.051 8683.051 8683.051 8683.051 8683.051	
S-Phenoxy_TIZN_2.15.16_CARBON-3.jdf	9°T \$"T b'1	(E'I Z'I	I.I 0.I	6'0 8'0 4	°0 9°0	5°0 b'	D & 0	abundance	220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0	6489.691	X : parts per Million : 13C

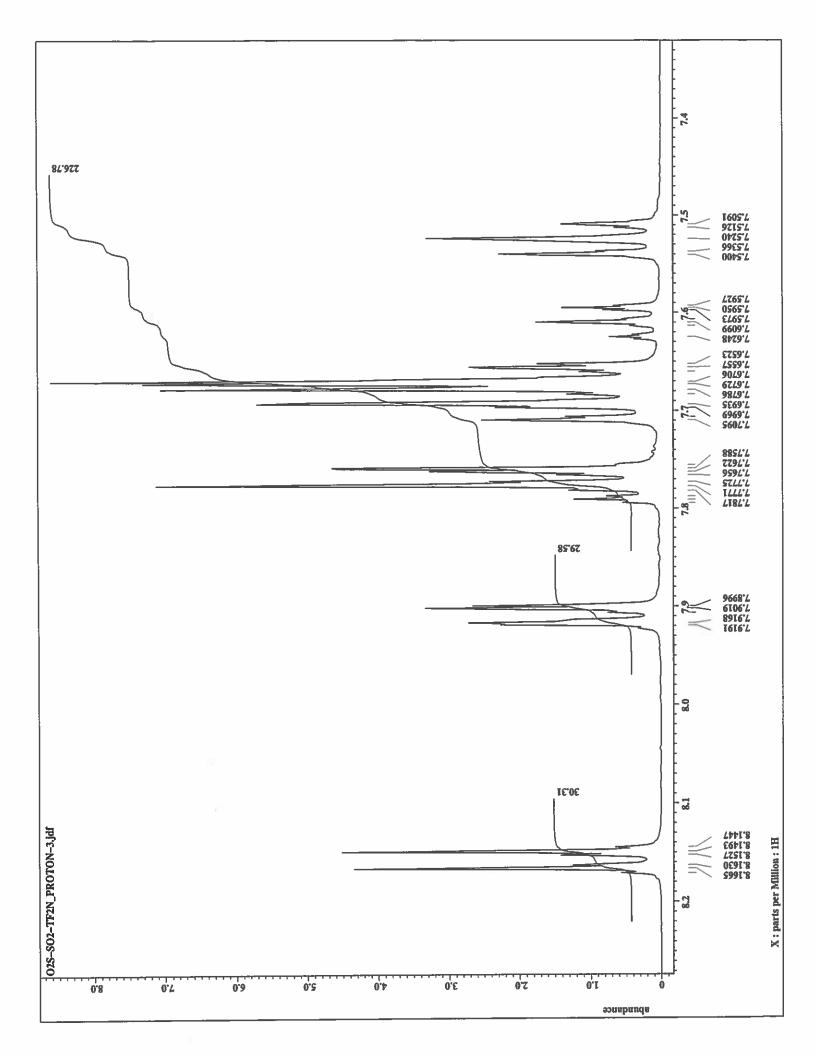


Sound Including	0 0 0	= 52428 = 19F = [ppm] = ECA 500 = JNM-ECA500			epetition_time = 4.557.4528[s] emp_get = 19.9[dC]	
				SWE HYNNHERIKE	-90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0170.0	
S-Phenoxy_T/2N_FLUORINE-3.jdf					30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -80.0	marts nor Million : 198
<u></u>	0.0€	,,	0.02	0.01	spangence #	

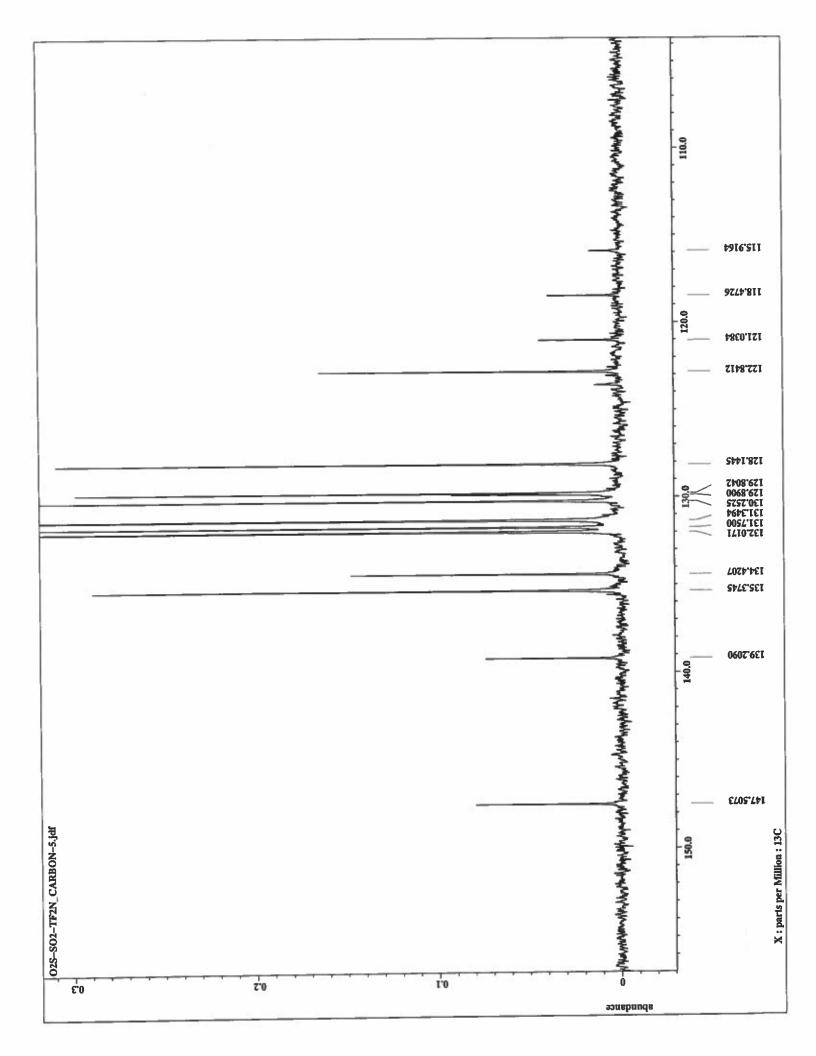

Elemental Analysis

Date 10/12/2016 RUSH Service X Rush service guarantees analyses will be completed and results evaluable by 5 PM EST on the day the sample is received by 11 AM. Include Email Address or FAX # Below Time 4H jdavis@southalabama.edu 14 2016 Duplicate Company/School U SOUTH ALABAMA Explosive Vac. HGH Elements CHNOSF City, State, Zip MOBILE, AL, 36688 T)() To be dried: Yes X Temp. 100C Vac Address CHEM BLDG 223 Hygroscopic M.P. UNK Phone (251) 751-0520 Analyze CHN Dept. CHEMISTRY Single X Name JAMES DAVIS Present: ō. Date Completed Found 45.66 252 1.9<u>4</u> 45.72 2.60 1.90 Sample No. JD-SULFONIUM-4 Theory Professor/Supervisor: DAVIS 6180 Atlantic Blvd. Suite M www.atlanticmicrolab.com Norcross, GA 30071 Date Received **Element** PO# / CC#_ Remarks: C I Z

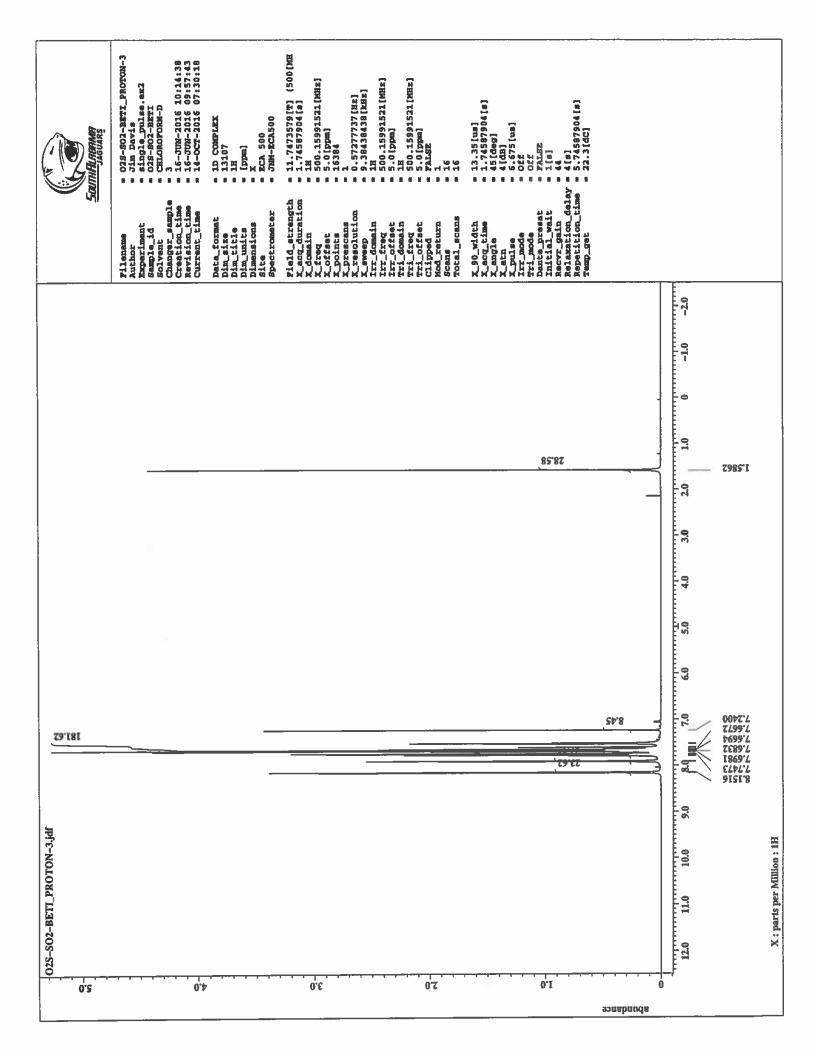

SouthHugh	Filename = 028-RETI_CARBON-3.jdf Author = Jim Davis Experiment = single_pulse_dec Sample_id = 028-RETI Salvent = CHLOROFORM-D	Changer_sample = 3 Creation_time = 12-OCT-2016 19:46:50 Revision_time = 12-OCT-2016 19:29:23 Current_time = 14-OCT-2016 07:45:32					X_sweep = 39.3081761[kRz]				Irr_ath_dec = 20.5[dB] Irr_ath_noe = 20.5[dB] Irr_ath_dec = 20.5[dB] Irr_noties = ment		Recvigation = 60 Relaxation_dalay = 2[8] Repetition_time = 2.83361792[8]	•		40.0 30.0 20.0 10.0 0 -10.0 -20.0		
O2S-BETT_CARBON-3.jdf		71							-							220.0 210.0 200.0 190.0 180.0 150.0 150.0 150.0 120.0 120.0 10.0 10.0 10.0 90.0 80.0 70.0 60.0 30.0 30	2147,631 2587,621 2687,621 2725,477 2725,477 2725,477 2725,477 2725,477 2725,477	ī
0.25-BET	L'I 9'I	si.	p*I	£T Z	ı ıı	0.1	6'0	8.0	£.0	9'0	\$.0	p.0	€.0	0.2 0.2	abauda I.O	220.0 210.		т: х

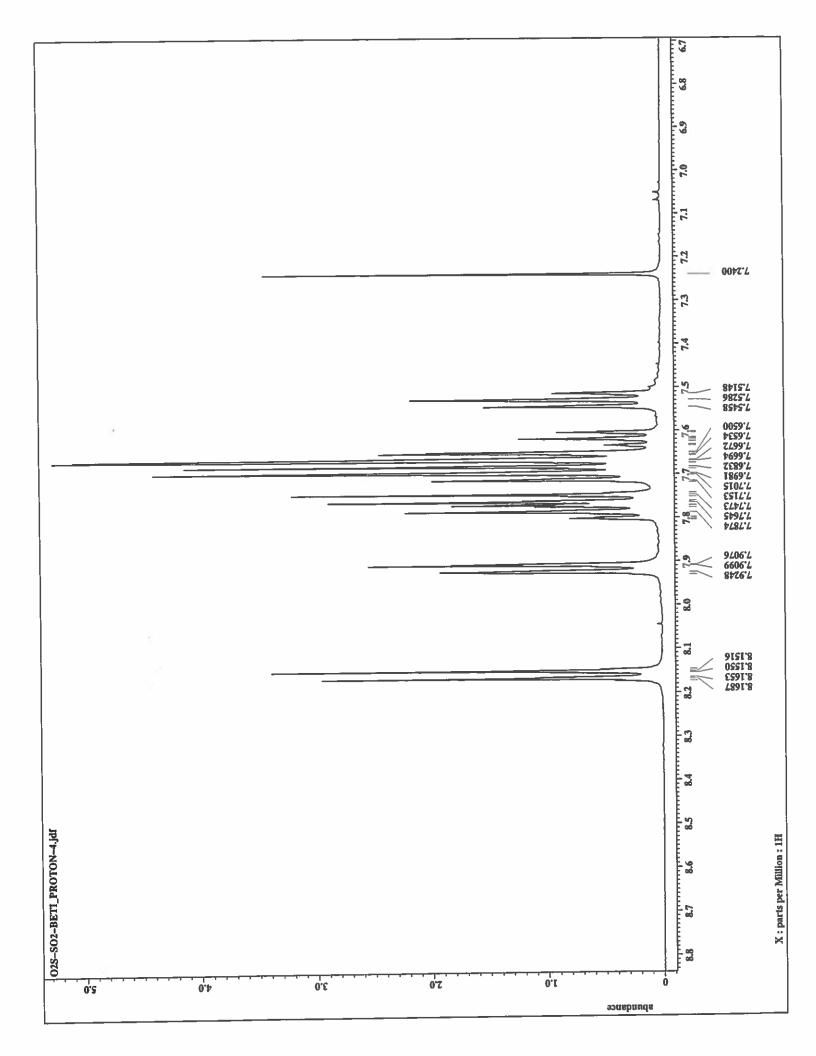


Szumifungannag	= 026-BETI_FIJORINE-3.j = Jim Davis = single_pulse.ex2 = 028-BETI = CHLAROFORM-D mple = 12-0CT-2016 12:25:31 lime = 12-0CT-2016 12:08:08 lime = 12-0CT-2016 07:44:52							
	Filename Author Experiment Sample_id Solvent Changer_sample Creation_time Revision_time Revision_time	Data_format Dim_size Dim_title Dim_units Dim_units Bipensions Site	Field_strangth X_acq_duration X_domain X_domain X_freq X_offset X_points X_prescans X_resolution X_resolution X_resolution	IXT_freq IXT_offset TXL_domain TXL_freq TXL_offset Clipped Mod_return	Totel_scens X_90_width X_scq_time X_sngle X_sngle X_shth X_miles	Irr_mode Tri_mode Dante_presat Initial_wait Recvr_gain Relaration_delay Repetition_time Temmo cont		-140.0 -150.0 -160.4170.0
								.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 70.0 55.0 55.0 55.0 55.0 55.0 55.0 5
								.0 -40.0 -50.0 -60.0 -70.0 -80.0 - 10.0 -80.0 - 10.
02S-BETI_FLUORINE-3.jdf								20.0 10.0 0 -10.0 -20.0 -30.0 X : narts per Million : 19F
0.62 0.25	0.12 0.02 0.91 0.81	1 0.71 0.81 0.2	1 0,61 0,51 0,21 0	.tt 0.0t 0.e	0.8 0.7 0.8	0.2 0.4 0.4	abundance	30.0 20.0

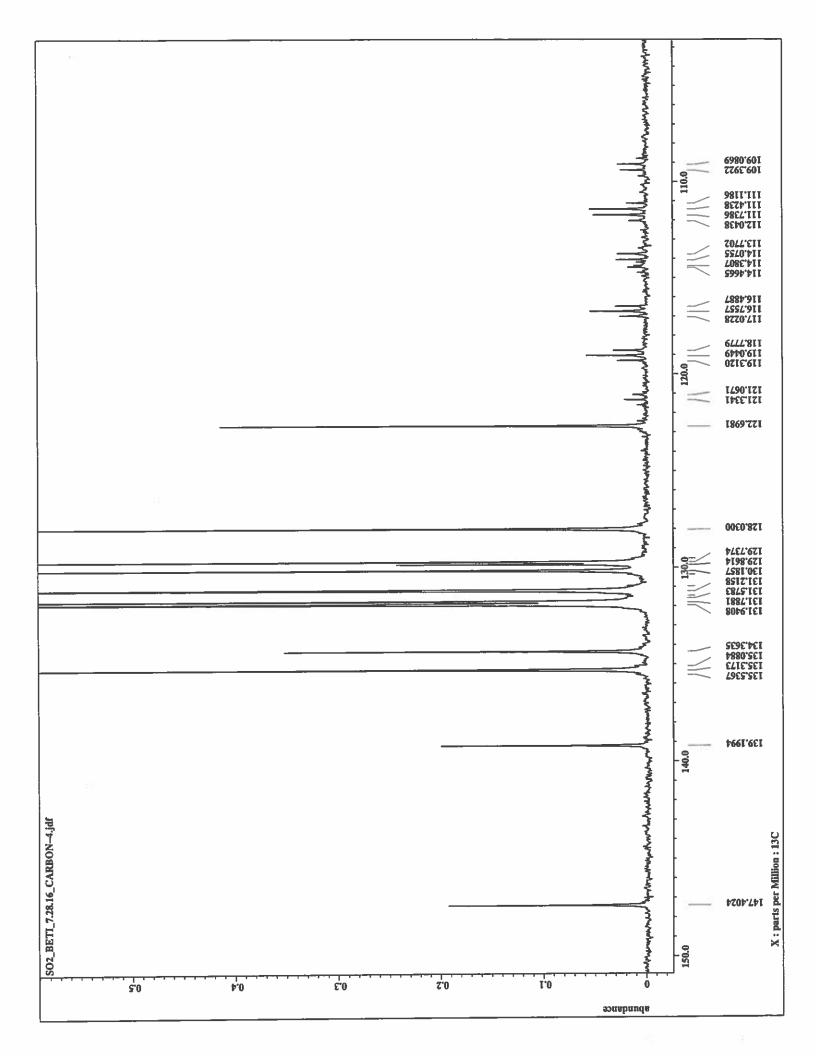

Elemental Analysis

Date 10/12/2016 RUSh Service X Rush service guarantees analyses will be completed and results available by 5 PM EST on the day the sample is received by 11 AM. Include Email Address or FAX # Below Time 4H jdavis@southalabama.edu OCT 14 2016 Company/School U. SOUTH ALABAMA Duplicate Explosive To be dried: Yes X No Temp. 100C Vac. HIGH Elements CHNOSF City, State, Zip MOBILE, AL, 36688 Address CHEM BLDG 223 Hygroscopic M.P. unk Phone (251) 751-0520 Analyze CHN Dept. CHEMISTRY Single X Name JAMES DAVIS Present: for: Date Completed Found 4548 282 211 14 2016 Professor/Supervisor: JAMES DAVIS 2.05 45.68 2.80 Sample No. JD-SULFONIUM-5 Theory OCT 6180 Atlantic Blvd. Suite M www.atlanticmicrolab.com Norcross, GA 30071 Date Received **Element** PO#/CC# Remarks: O I Z


Samillanding	Filename = 028-802-TF2M_CARBON-3 Author	Deta_format = 1D COMPLEX Dim_size = 2614 Dim_tille = 13C Dim_units = [ppm] Site = ECA 500 Spectrometer = JMH-ZCA500	##eld_strength = 11.7473579[T] (500[MH X_acq_duration = 0.83361792[a] X_domain = 13C X_trength = 125.76529768[MHz] X_trength = 125.76529768[MHz] X_points = 12768		X_90_width = 12.55[us] X_acc_time = 0.83361792[s] X_angle = 30[deg] X_anth = 6[dB] Irr_ath_dec = 4.183333[us] Irr_ath_noe = 20.5[dB]	ine ine				
								0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0		
	3							1.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0	2476.261 7024.261 7024.261 7026.161 7102.61 7102.621 2108.621 2148.251 2148.251 2148.251 2148.251	
O2S-SO2-TF2N_CARBON-3.jdf	0°1 6°0	8°0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 0	₽'0 €'0	Z*0	abundance	220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0		X : parts per Million : 13C



Saunt Britainer	Pilename	
02S-SO2-TF2N_FLUORINE-3.jdf	2027 O.12 0.02 0.01 0.81 0.71 6.01 0.01 10.01 10.01 0.01 0.01 0.01 0	30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -40.0 -50.0 -70.0 -80.0 -90.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 170.0 X : parts per Million : 19F


Elemental Analysis

Date 10/12/2016 Rush Service X Rush service guarantees analyses will be completed and results analyses up 6 PH EST Include Email Address or FAX # Below Time 4H jdavis@southalabama.edu 14 2016 Duplicate Company/School U SOUTH ALABAMA Explosive To be dried: Yes 🔀 No Temp. 100C Vac HIGH Elements CHNOSF City, State, Zip MOBILE, AL, 36688 <u>100</u> Address CHEM BLDG 223 Phone (251) 751-0520 Hygroscopic M.P. unk Analyze CHN Dept. CHEMISTRY Single X Name JAMES DAVIS Present: jo: Date Completed Found 244 경 8 <u>~</u> ਲ 2016 4 2.44 1.79 42.91 Sample No. JD-SULFONIUM-6 Theory Professor/Supervisor: DAVIS **100** 6180 Atlantic Blvd. Suite M www.atlanticmicrolab.com Norcross, GA 30071 Date Received **Element** PO# / CC#_ Remarks: O 工 Z

Scumiffensing:	State Solution Solution State Solution State Sta	Date_format = 1D COMPLEX Dim_size = 26214 Dim_title = 13C Dim_units = 1pml Dimensions = x Site = zca 500 Spectrometer = JMH-ECA500	### ### ### ##########################			Int.noise = WALTE Decoupling = TRUE Ential_wait = 1[s] Noe_time = TRUE Noe_time = 2[s] Recting = 6[s] ReleaseLion_delay = 2[s] Repetition_time = 2.83361792[s]	Temp_get. = 21.7 [dC]			
SO2_BETI_7.28.16_CARBON-3.jdf								220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0	1869"ZZI 0000"LL \$LST"CI 1869"ZZI 0000"8ZI \$SIZ"ICI 1881-TCI 80%T	X : parts per Million : 13C
L'I 9'I	5:1 p.1 E.1	7'I I'I	0.1 6.0	8.0 7.0	9.0 2.0		abundance 0.1 0.2			

Samiltuelling		* * * * * * * *	Field_strength = 11.7473579[T] (500 X_acq_duration = 0.5574528[s] X_domain = 19T X_offset = 470.62046084[HHz] X_points = 65346 X_prescens = 1.7993855[Hz] X_resolution = 1.7993855[Hz] X_resolution = 1.7993855[Hz] Ix_domain = 19T Ix_freq = 470.62046084[HHz] Tx_l_domain = 19T	Trimode = Off Dante_presat = FALSE Initial_wait = 1[8] Recvr_gain = 46 Radaxation_dalay = 4[8] Repetition_time = 4.55574528[8] Temp_get = 22.3[4C]	40.0 -150.0 -160.00.00
		3			-80.0 -90.0 -100.0 -110.0 -120.0 -130.0 -140.0 -150.0 -160.0 -160.0 -150.0 -160
					-20.0 -30.0 -40.0 -50.0 -60.0 -70.0
O2S-SO2-BETI_FLUORINE-3.jdf					30.0 20.0 10.0 0 -10.0 -

Compiled NMR Data

Compound 1 (TPS Tf_2N):

¹H (CDCl₃, 500 MHz): δ 7.35-7.79 (m, 3H), 7.66-7.72 (m, 6H), and 7.60-7.65 (m, 6H) ppm.

 13 C (CDCl₃, 125 MHz): δ 134.86, 131.76, 130.90, 123.98, 123.69, 121.14, 118.58 and 116.02 ppm.

¹⁹F (CDCl₃, 470 MHz): δ -78.62 ppm.

Compound 2 (TPS BETI):

 1 H (CDCl₃, 500 MHz): δ 7.74-7.78 (m, 3H), 7.66-7.72 (m, 6H), and 7.60-7.64 (m, 6H) ppm.

¹³C (CDCl₃, 125 MHz): δ 134.97, 131.75, 130.88, 123.89, 119.46, 119.20, 118.93, 117.17, 116.91, 116.64, 114.19, 113.88, 111.85, 111.55, 109.51, and 109.21 ppm.

¹⁹F (CDCl₃, 470 MHz): δ -78.77 and -116.98 ppm.

Compound 3 (DPS-POP Tf_2N):

 1 H (CDCl₃, 500 MHz): δ 7.73-7.79 (m, 2H), 7.67-7.73 (m, 4H), 7.60-7.65 (m, 6H), 7.40-7.44 (tt, 2H), 7.23-7.28 (m, 1H), 7.16-7.21 (m, 2H), and 7.07-7.11 (m, 2H) ppm.

¹³C (CDCl₃, 125 MHz): δ 163.68, 153.75, 134.56, 133.36, 131.61, 130.45, 130.36, 125.80, 124.53, 123.63, 121.08, 120.62, 119.59, 118.52, 115.96, and 114.67 ppm.

¹⁹F (CDCl₃, 470 MHz): δ - 78.59 ppm.

Compound 4 (DPS-POP BETI):

¹H (CDCl₃, 500 MHz): δ 7.73-7.79 (m, 2H), 7.67-7.73 (m, 4H), 7.60-7.66 (m, 6H), 7.40-7.45 (tt, 2H), 7.23-7.28 (m, 1H), 7.16-7.20 (m, 2H), and 7.07-7.11 (m, 2H) ppm.

¹³C (CDCl₃, 125 MHz): δ 163.74, 153.78, 134.57, 133.38, 131.62, 130.45, 130.37, 125.82, 124.57, 120.64, 121.70, 121.45, 121.20, 119.79, 119.59, 119.43, 119.16, 118.89, 117.13, 116.87, 116.60, 114.80, 114.69, 114.40, 114.13, 113.83, 112.10, 111.80, 111.49, 111.18, 109.80, 109.46, and 109.45 ppm.

¹⁹F (CDCl₃, 470 MHz): δ -78.73 and -116.96 ppm.

Compound 5 (DPS-PSP Tf_2N):

¹H (CDCl₃, 500 MHz): δ 8.14-8.18 (dd, 2H), 7.88-7.92 (dd, 2H), 7.74-7.80 (m, 4H), 7.64-7.72 (m, 8H), 7.58-7.63 (m, 1H), and 7.50-7.55 (m, 2H) ppm.

 13 C (CDCl₃, 125 MHz): δ 147.51, 139.21, 135.37, 134.42, 132.02, 131.75, 131.35, 130.25, 129.89, 129.80, 128.14, 123.20, 122.84, 121.03, 118.47, and 115.92 ppm.

¹⁹F (CDCl₃, 470 MHz): δ -78.64 ppm.

Compound 6 (DPS-PSP BETI):

¹H (CDCl₃, 500 MHz): δ 8.14-8.19 (dd, 2H), 7.88-7.92 (dd, 2H), 7.74-7.82 (m, 4H), 7.64-7.72 (m, 8H), 7.58-7.63 (m, 1H), and 7.49-7.54 (m, 2H) ppm.

¹³C (CDCl₃, 125 MHz): δ 147.40, 139.20, 135.20, 134.36, 131.94, 131.79, 131.22, 130.19, 129.86, 129.74, 128.03, 122.70, 121.60, 121.33, 121.07, 119.31, 119.05, 118.78, 117.02, 116.75, 116.49, 114.47, 114.20, 113.77, 112.04, 11.74, 111.42, 111.12, 109.39, and 109.09 ppm.

¹⁹F (CDCl₃, 470 MHz): δ -78.74 and -117.01 ppm.