Supporting information

MOF-Derived RuO₂/Co₃O₄ heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in

alkaline solutions

Haizhen Liu¹, Guoliang Xia¹, RuiRui Zhang¹, Peng Jiang¹, Jitang Chen¹, Qianwang Chen^{1, 2*}

¹Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China

²High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

Electrochemically active surface area (ECSA) measurement details

The electrochemically active surface area (ECSA) of sample is usually estimated using a simple cyclic voltammetry method. The ECSA of a catalyst sample is calculated from the double layer capacitance according to following formula: ECSA= C_{dl} / C_s

However, the exact surface area of our material is difficult to obtain due to the unknown capacitive behavior (Cs) of the electrode of Co_3O_4/RuO_2 . However, we can estimate the relative surface areas of three samples, since the double layer capacitance (C_{dl}) is expected to be linearly proportional to effective active surface area for samples with similar composition and this method was employed in our previous study. The double layer capacitance is estimated by plotting the ΔJ at 0.15 V vs RHE against the scan rate, where the slope is twice of C_{dl}.^{1, 2} The C_{dl} of S-6, Co₃O₄ and RuO₂ are 3.1, 1.1 and 0.6mF/cm², respectively, showing that the product owns more active sites than single Co₃O₄ and RuO₂.

Figure S1. Variations of double-layer charging currents at 0.15V vs RHE with potential scan rate.

References

- 1. J. Chen, G. Xia, P. Jiang, Y. Yang, R. Li, R. Shi, J. Su and Q. Chen, *ACS Appl. Mater. Interfaces*, 2016, **8**, 13378-13383.
- 2. Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He and Q. Chen, *Energy Environ. Sci.*, 2015, **8**, 3563-3571.