Electronic Supplementary Information

Polymyxin B sulfate inducing time-dependent antagonism of the mixtures of pesticide, ionic liquids, and antibiotics to *Vibrio qinghaiensis* sp.-Q67

Ye Fan,^a Shu-Shen Liu, *ab Rui Qu,^a Kai Li^a and Hai-Ling Liu*b

 ^a Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 ^b State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

Total pages: 7 Total Tables: 2 Total figures: 4

Chemical	Abbr.	CAS RN	Purity (%)	M.W.a	Concentrations of Stock (mol/L)
Imidacloprid	IMI	138261-41-3	99.5%	255.66	1.631E-03
1-Hexyl-3-methylimidazolium bromide	[hmim]Br	85100-78-3	>98%	247.18	1.035E-02
1-Hexyl-3-methylimidazolium chloride	[hmim]Cl	171058-17-6	>98%	202.73	1.004E-02
Chloramphenicol	CHL	56-75-7	99.9%	323.13	4.054E-06
Polymyxin B sulfate	POL	1405-20-5	95%	1301.56	1.521E-05

 Table S1
 Some physical properties, CAS RN and concentrations of stocks of five chemicals

^a MW: molecular weight

Chemical	Time (h)	model	α	β	R ²	RMSE	EC ₅₀
IMI	0.25	Weibull	5.69	1.79	0.9897	0.0217	4.135E-04
	3	Weibull	6.00	1.87	0.9839	0.0291	3.940E-04
	6	Weibull	5.44	1.69	0.9868	0.0249	3.666E-04
	9	Weibull	5.38	1.68	0.9905	0.0203	3.797E-04
	12	Weibull	6.12	1.94	0.9903	0.0206	4.534E-04
[hmim]Br	0.25	Weibull	8.76	2.77	0.9957	0.0254	5.073E-04
	3	Weibull	15.00	5.57	0.9965	0.0246	1.743E-03
	6	Weibull	8.74	3.29	0.9736	0.0616	1.706E-03
	9	Weibull	7.48	2.78	0.9683	0.0623	1.505E-03
	12	Weibull	11.42	4.33	0.9887	0.0445	1.896E-03
[hmim]Cl	0.25	Weibull	8.91	2.76	0.9948	0.0275	4.355E-04
	3	Weibull	15.00	5.50	0.9919	0.0359	1.607E-03
	6	Weibull	9.71	3.55	0.9749	0.0574	1.451E-03
	9	Weibull	10.42	3.81	0.9928	0.0311	1.475E-03
	12	Weibull	15.00	5.61	0.9982	0.0210	1.823E-03
CHL	0.25	Weibull	9.92	2.11	0.6742	0.0260	1.333E-05
	3	Weibull	5.81	1.09	0.9089	0.0440	2.155E-06
	6	Weibull	8.31	1.37	0.9562	0.0492	4.643E-07
	9	Weibull	11.57	1.85	0.9790	0.0433	3.530E-07
	12	Weibull	13.90	2.21	0.9908	0.0328	3.504E-07
POL	0.25	Weibull	11.36	2.40	0.8956	0.0347	1.300E-05
	3	Weibull	26.15	4.75	0.9981	0.0179	2.616E-06
	6	Weibull	33.05	6.00	0.9960	0.0389	2.695E-06
	9	Weibull	42.60	7.80	0.9910	0.0563	3.101E-06
	12	Weibull	51.80	9.55	0.9982	0.0128	3.448E-06

Table S2Concentration-response models (α and β), statistics (R² and RMSE), median effectiveconcentrations (EC₅₀) of single chemicals at five exposure times

(**O**: R1; ∞: R2; **□**: R3; **□**: R4; ♦: R5)

Fig. S2 The pEC₂₀, pEC₅₀ and pEC₇₀ of 10 mixture rays of quaternary mixture at five exposure times (\bigcirc : R1; \bowtie : R2; \square : R3; \square : R4; \blacklozenge : R5)

Fig. S3 The concentration-response relationships of five mixture rays (R1, R2, R3, R4 and R5) in [hmim]Br-IMI-CHL systems at five exposure times where the black dots (∞) refer to the experimental value, the black solid lines (—) to those fitted by the Weibull, the red solid lines (—) to those predicted by CA and the dashed lines (---) to the 95% confidence intervals.

Fig. S4 The concentration-response relationships of five mixture rays (R1, R2, R3, R4 and R5) in [hmim]Cl-IMI-CHL systems at five exposure times where the black dots (∞) refer to the experimental value, the black solid lines (—) to those fitted by the Weibull, the red solid lines (—) to those predicted by CA and the dashed lines (---) to the 95% confidence intervals.