Supporting Information for

Construction of Hybrid Multi-shell Hollow Structured CeO₂-MnOx Materials for Selective Catalytic Reduction of NO with NH₃

Kaili Ma^{a,b}, Weixin Zou^{a,b}, Lei Zhang^c, Lulu Li^{a,b}, Shuohan Yu^{a,b}, Changjin Tang^{a,b*}, Fei Gao^b, Lin

Dong^{a,b*}

^a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing

University, Nanjing 210093, P.R. China. * Email: tangcj@nju.edu.cn

^b Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing

210093, P.R. China. * Email: donglin@nju.edu.cn.

^c School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404000, P.R.

China

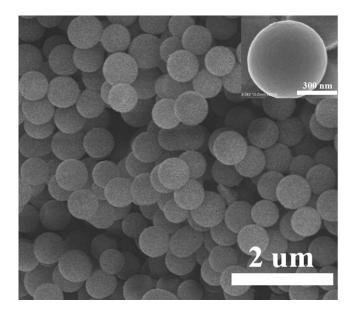


Figure S1 SEM image of carbon spheres. (Inset shows individual carbon sphere)

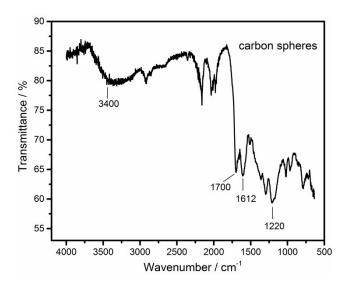
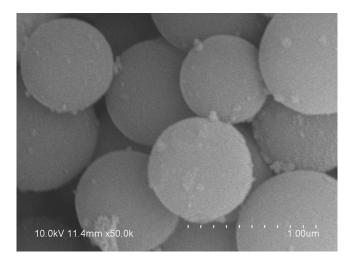



Figure S2 FT-IR spectrum of obtained carbon spheres.

The absorption peaks at 3400 cm⁻¹ and 1612 cm⁻¹ were attributed to the stretching and bending vibration of -OH, respectively. While the weak absorption peaks at 1700 cm⁻¹ and 1220 cm⁻¹ exhibited stretching vibration of C=O and C-O, respectively. The result indicated the

existence of abundant superficial active functional groups on the surface of obtained carbon spheres, including -COOH, -OH, C=O, etc.

Figure S3 SEM image of CSs@CeO₂-MnO*x* precursor.

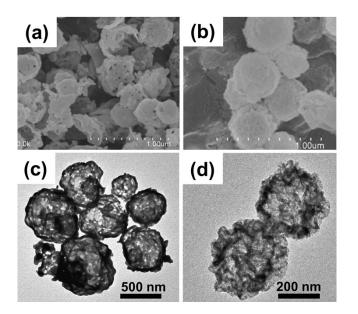


Figure S4 SEM and TEM images of (a, c) Mn_2O_3 and (b, d) CeO₂ hollow spheres at heat ramp rate of 5 °C min⁻¹.

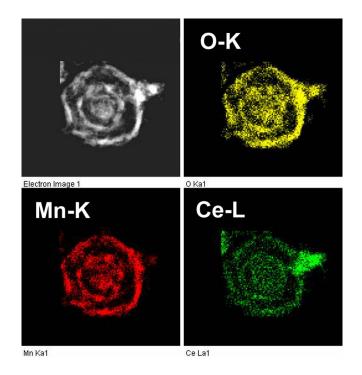


Figure S5 HAADF-STEM mapping images of one occasional triple-shell hollow sphere with non-

dispersed particles.