Electronic Supplementary information

Silicone elastomers with covalently incorporated aromatic voltage stabilizers

Aliff Hisyam A Razak^{a,b} and Anne Ladegaard Skov^a

^a Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark.

^b Faculty of Engineering Technology, University of Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

1) Number of PDMS-PPMS repeating units and stoichiometric ratio of cross-linked PDMS-PPMS copolymers

The targeted number of PDMS-PPMS repeating units in the copolymer (X) was calculated such that the targeted $M_{n,T}$ results in a telechelic hydride terminated PDMS-PPMS copolymer as shown below:

$$X = \frac{M_{n,T} - M_{n,PPMS}}{M_{n,PDMS} + M_{n,PPMS}}$$

Equation 1

where $M_{n,PDMS}$ and $M_{n,PPMS}$ are the molecular weight of PDMS and PPMS, respectively.

The stoichiometric ratio for preparing telechelic hydride-functional PDMS-PPMS copolymers (r_1) was calculated as:

$$r_1 = \frac{[hydride]}{[vinyl]} = \frac{(X+1)f_{PPMS}}{Xf_{PDMS}} = \frac{X+1}{X}$$

Equation 2

where f_{PDMS} and f_{PPMS} are the functionality of PDMS ($f_{PDMS} = 2$) and PPMS ($f_{PPMS} = 2$), respectively.

2) Stoichiometric ratio of crosslinking

The stoichiometric ratio for the cross-linking (r_2) was 1.5 and was calculated below:

$$r_{2} = \frac{[vinyl]}{[hydride]} = \frac{F_{CL}[CL]_{0}}{F_{CP}[CP]_{0}} = \frac{F_{CL}}{F_{CP}} \cdot \frac{m_{CL}/M_{CL}}{m_{CP}/M_{CP}}$$

Equation 3

where F_{CL} and F_{CP} are average numbers of functional group on the crosslinker (15-functional) and the PDMS-PPMS copolymer (2-functional), respectively, while [...]₀, m_x , and M_x are the initial concentration, the mass and the molecular weight, respectively, (x = CL, CP).

3) Calculation of molar concentration of phenyl groups in PDMS-PPMS elastomers from ¹H-NMR

Figure S1 The illustration of NMR spectrum with peaks of phenyl and methyl of PDMS-PPMS elastomer.

a) Relative number of moles of phenylmethylsiloxane (X_1): Note: The proton signal at δ = 7.2 – 7.6 ppm representing the phenyl (C_6H_5) protons (5H's).

$$X_1 = \frac{A_1}{H_1}$$

Equation 4

where A_1 and H_1 are the area of integration and the number of protons for phenyl group, respectively.

b) Relative number of moles of dimethylsiloxane (X_2): Note: The proton signal at $\delta = 0.02 - 0.4$ ppm representing the dimethyl [(CH₃)₂] protons (6H's).

$$X_{2} = \frac{A_{2} - Me(end) - Me(PMS)}{H_{2}} = \frac{A_{2} - 12X_{1} - 3m \cdot X_{1}}{H_{2}}$$
Equation 5

where A_2 and H_2 are the area of integration and the number of protons for methyl, respectively, while Me(end) and Me(PMS) are methyl groups for telechelic hydride endgroups and phenylmethylsiloxane unit (*m*), respectively.

c) Actual mole percentage of phenyl groups of PDMS-PPMS elastomer ($n_{C_6H_6}$ in mol):

$$n_{C_6H_6} = \frac{X_1}{X_1 + X_2}$$

Equation 6

d) True molar concentration of phenyl groups of PDMS-PPMS elastomer ($C_{C_6H_6}$ in mol/g):

$$C_{C_6H_6} = \frac{n_{C_6H_6}}{m_{PPMS} + m_{PDMS}}$$

Equation 7

where m_{PPMS} and m_{PDMS} are masses of PPMS and PDMS, respectively.

4) Calculation of engineering stress and strain

The engineering stress (σ_E) was calculated from the force (*F*) and the cross-sectional area of the strip (*A*):

$$\sigma_E = \frac{F}{A} = \frac{F}{t \times w} = \frac{\tau \cdot d}{t \cdot w}$$
Equation 8

where A = film thickness (t) \cdot constant width (w = 6 mm) and F = torque (τ) \cdot drum diameter (d = 10.3 mm).

The engineering strain (ϵ_E) was calculated as a ratio of a stretched strain ($L - L_0$) to an initial strain (L_0) as:

$$\epsilon_E = \frac{L - L_0}{L_0}$$

Equation 9

where a final strain after stretching (L) was determined from Hencky strain (ϵ_H) as follows:

 $\epsilon_H = ln \frac{L}{L_0}$

Equation 10

$$L = L_0 e^{\epsilon_H} = L_0 e^{(r_H)t_s}$$

Equation 11

where ϵ_H is a product of Hencky rate ($r_H = 1 \times 10^{-3}$ rotation/s) and step time (t_s).

By putting equation (11) in (9), the final expression of engineering strain (ϵ_E) was obtained as below:

 $\epsilon_E = e^{\epsilon_H} - 1$

Equation 12

Young's moduli were determined from slopes in the linear regime of stress-strain plots at 5 % strain.

5) NMR spectra of PDMS-PPMS copolymers

The NMR spectra for PDMS-PPMS copolymers with different true molar concentrations of phenyl groups ($C_{C_6H_6}$) are shown in Figures S2– S9.

a) PDMS-PPMS copolymer (**377DMS_2PMS**, $C_{C_6H_6} = 5.0 \times 10^{-4} \text{ mol g}^{-1}$)

¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S2 The NMR for 377DMS_2PMS.

b) PDMS-PPMS copolymer (**231DMS_2PMS**, $C_{C_6H_6} = 6.9 \times 10^{-4} \text{ mol g}^{-1}$)

¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S3 The NMR for 231DMS_2PMS.

c) PDMS-PPMS copolymer (**126DMS_2PMS**, $C_{C_6H_6} = 7.8 \times 10^{-4} \text{ mol g}^{-1}$)

¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S4 The NMR for 126DMS_2PMS.

d) PDMS-PPMS copolymer (80DMS_2PMS, $C_{C_6H_6}$ = 8.4 × 10⁻⁴ mol g⁻¹)

¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S5 The NMR for 80DMS_2PMS.

e) PDMS-PPMS copolymer (**377DMS_6PMS**, $C_{C_6H_6} = 8.7 \times 10^{-4} \text{ mol g}^{-1}$) ¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 – δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S6 The NMR for 377DMS_6PMS.

f) PDMS-PPMS copolymer (**231DMS_6PMS**, $C_{C_6H_6} = 9.8 \times 10^{-4} \text{ mol g}^{-1}$)

¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S7 The NMR for 231DMS_6PMS.

g) PDMS-PPMS copolymer (**126DMS_6PMS**, $C_{C_6H_6} = 1.5 \times 10^{-3} \text{ mol g}^{-1}$) ¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S8 The NMR for 126DMS_6PMS.

h) PDMS-PPMS copolymer (**80DMS_6PMS**, $C_{C_6H_6} = 2.0 \times 10^{-3} \text{ mol g}^{-1}$) ¹H-NMR (CDCl₃, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H's, -SiO(CH₃)₂-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H's, -SiC₆H₅-).

Figure S9 The NMR for 80DMS_6PMS.

6) Scanning electron microscopy (SEM) images for the cross-linked copolymers and the reference

Figure S10 SEM images of: **a**) DMS-H31 (*C*=0), **b**) 377DMS_2PMS (*C*=5.0), **c**) 231DMS_2PMS (*C*=6.9), **d**) 126DMS_2PMS (*C*=7.8), **e**) 80DMS_2PMS (*C*=8.4), **f**) 377DMS_6PMS (*C*=8.7), **g**) 231DMS_6PMS (*C*=9.8), **h**) 126DMS_6PMS (*C*=15), and **i**) 80DMS_6PMS (*C*=20), *C* is in 10⁻⁴ g/mol.

7) Electrical breakdown strengths as function of Young's moduli for the cross-linked PDMS-PPMS copolymers and the reference elastomer

Figure S11 A plot of electrical breakdown strengths versus Young's moduli.

8) Weibull parameters η and θ as function of Young's moduli for the cross-linked PDMS-PPMS copolymers and the reference elastomer

The curves of Weibull parameters η and θ versus determined Young's moduli for the crosslinked copolymers and the reference are shown in Figure S12. Figure S12 (a) shows an optimum of θ -parameter (60) occurring at Young's modulus of 0.33 MPa. For η -parameter, the optimum occurs at the highest Young's modulus of 0.43 MPa (see Figure S12 (b)).

Figure S12 Weibull parameters versus Young's moduli: a) β -parameter, b) η -parameter.

9) Theoretical molar concentration of phenyl group

The numbers of phenyl groups in PPMS with $M_{n,PPMS}$ of 400 and 1000 g mol⁻¹, respectively, are given by:

$$m^* = \frac{M_{n,PPMS} - 2M_{end}}{M_{PMS}}$$

Equation 13

where M_{PMS} and M_{end} are molecular weights of phenylmethylsiloxane unit (M_{PMS} = 136 g mol⁻¹) and telechelic hydride groups, Si(CH₃)₂-H, (M_{end} = 56 g mol⁻¹), respectively. Thus a cross-linked PDMS-PPMS copolymer containing short- and long-chain PPMS are defined as m^* = 2 and 6, respectively.

The theoretical molar concentration of phenyl groups in cross-linked PDMS-PPMS copolymers C_{t,C_6H_6} in mol g⁻¹ was determined as:

$$C_{t,C_6H_6} = \frac{m^* \cdot n_{PPMS}}{m_{PPMS} + m_{PDMS}} = \frac{m^* \cdot n_{PPMS}}{n_{PPMS} \cdot M_{n,PPMS} + n_{PDMS} \cdot M_{n,PDMS}}$$
Equation 14

where m_{PPMS} and m_{PDMS} are masses of PPMS and PDMS, respectively, while n_{PPMS} and n_{PDMS} are molar amounts.

The molar amount of PPMS is expressed as $n_{PPMS} = (X + 1)n_{PDMS}$ and Equation 14 can be simplified as follows:

$$C_{t,C_6H_6} = \frac{m^* \cdot (X+1)}{(X+1)M_{n,PPMS} + M_{n,PDMS}}$$

Equation 15

The simplified theoretical molar concentrations of phenyl group in PDMS-PPMS can be calculated below:

$$C_{t,C_6H_6} = \frac{m^*}{M_{n,PPMS} + (X+1)^{-1}M_{n,PDMS}}$$

Equation 16

Samples with different theoretical molar concentrations of phenyl groups in PDMS-PPMS copolymer are listed in Table S1:

PDMS-PPMS copolymer (nDMS_mPMS)	Theoretical molar concentration of phenyl groups C_{t,C_6H_6} [10 ⁻⁴ mol g ⁻¹]
377DMS_2PMS	1.3
231DMS_2PMS	1.6
126DMS_2PMS	2.3
80DMS_2PMS	3.5
377DMS_6PMS	3.7
231DMS_6PMS	5.6
126DMS_6PMS	7.3
80DMS_6PMS	11

Table S1 Theoretical phenyl concentrations of cross-linked PDMS-PPMS copolymers.

10) UV/Vis spectra of the cross-linked copolymers and the reference elastomer

The absorption spectra of energy from UV/Vis light absorbed by different concentrations of phenyl group are shown in Figure S13. The phenyl group of the cross-linked copolymers absorbs UV/Vis light in the energy band of 4.5 - 5.5 eV as seen from the absorbance peaks.

Figure S13 Spectra of UV/Vis absorption of PDMS elastomer and cross-linked PDMS-PPMS copolymers; *C* is in 10^{-4} mol g⁻¹.